首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two component silicone modified epoxy resin based low surface energy and non-toxic foul release coatings were developed. Silicone modified epoxy resin with 15 and 30% silicone content was used as component A and a polyether diamine (Jeffamine-500) was used as the component B. Free standing films were prepared by casting a mixture of components A and B in stoichiometric proportions. The surface composition, surface topography and wetting properties of the coatings were studied by angle resolved X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle goniometry respectively. The mechanical properties of the cured films were evaluated by tensile measurements as well as dynamic mechanical analysis. Pseudobarnacles made of aluminium studs were attached to the coated panels and adhesion tests were carried out by a pseudobarnacle tester. Coated panels were exposed in Mumbai harbor for fouling studies for a period of 90 days. Surface restructuring studies of the coatings upon immersion in seawater were carried out by measuring the changes in advancing and receding contact angles by contact angle goniometry. The effect of surface energy, modulus and surface restructuring of the coatings on the macrofouling and pseudobarnacle adhesion properties has been discussed in detail.  相似文献   

2.
Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.  相似文献   

3.
Abstract: This article presents a review of the published articles related to the novel application of spectroscopy and microscopy methods in paint and coatings quality evaluation. Traditional and simple techniques have been used in paint and coating industry for many years and proven to be effective. However, the paint and coating industry faces new formulations with nontraditional applications. Therefore, the industry needs to adjust itself with the current sophisticated production and testing methods. There are a number of modern microscopy and spectroscopy techniques that can be utilized in the paint and coating industry for a better understanding of the product quality and/or application performance. This, in particular, is highly applicable in modern and nontraditional applications such as nanotechnology and smart coatings. Though importance of spectroscopy and microscopy methods is being increasingly recognized in the industry, there is no current comprehensive review available to highlight the need for novel application of these techniques in surface coatings evaluations.  相似文献   

4.
Aluminum and ceramic (Al2O3) coatings were deposited onto the polymer substrate by air plasma spray (APS) to improve the mechanical properties of the polymer surface. The effect of spray parameters (current and spray distance in this paper) on the phase composition, microstructure and mechanical properties was investigated. Shear adhesion strength between the coatings and the substrates was also examined. The results indicate that the deposition parameters have a significant effect on the phase composition, microstructure and mechanical properties of as-spayed coatings. The maximum shear adhesion strength of the bond coats was 5.21 MPa with the current of 180 A and 190 mm spray distance.  相似文献   

5.
Surface free energy of a solid surface gives a direct measure of intermolecular interactions at interfaces and has a strong influence on adsorption and adhesion behaviour. However few data are available for the surface free energies of electroless Ni–P based composition coatings. In this paper, the electroless Ni–P, Ni–P-surfactant, Ni–Cu–P, Ni–P–PTFE and Ni–Cu–P–PTFE composite coatings were prepared under various coating conditions. The chemical compositions, surface morphology and thickness of the coatings were measured using an energy dispersive X-ray microanalysis (EDX), a scanning electron microscope (SEM) and a digital micrometer respectively. The contact angles of water, diiodomethane and ethylene glycol on the coatings were measured automatically using dataphysics OCA-20 contact angle analyser. The surface free energy of the coatings and their components (e.g. dispersion, polar or acid/base portions) were calculated using various methods. The experimental results showed that the incorporation of surfactant or PTFE particles into Ni–P matrixes has a significant influence on the surface free energy of the coatings, while the incorporation of copper into Ni–P matrixes has no significant influence on the surface free energy of the coatings.  相似文献   

6.
The influence of deposition temperature and concentration of NaNO2 in the phosphating bath on the surface morphology and coverage of iron-phosphate coatings on low carbon steel was investigated. The phosphate coatings were chemically deposited on steel from phosphate bath at different temperatures (30-70 °C) and with the addition of different amounts of accelerator, NaNO2 (0.1, 0.5 and 1.0 g dm−3). The morphology of phosphate coatings was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition of iron-phosphate coatings was determined using energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Surface coverage was evaluated by the voltammetric anodic dissolution (VAD) technique.It was shown that the increase in temperature of the NaNO2-free phosphating bath up to 70 °C caused an increase in surface coverage. The addition of NaNO2 in the phosphating bath significantly increased the surface coverage of phosphate coatings deposited at temperatures lower than 50 °C. The phosphate crystals were of laminated and needle-like structures for deposits obtained at temperatures lower than 50 °C, while at higher temperatures needle-like structure was transformed to laminated structure. The increase in NaNO2 concentration in the phosphating bath from 0.1 to 1.0 g dm−3 did not significantly increase the surface coverage, but decreased the crystals size, consequently favouring the phosphate nucleation and better packing of the crystals.  相似文献   

7.
Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.  相似文献   

8.
One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week.The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.  相似文献   

9.
TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {1 1 1}, {2 0 0} {2 2 0} and {3 1 1} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from −40 to −150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion.  相似文献   

10.
TiN/TiAlN multilayer coatings were deposited on M2 high speed steel by a pulsed bias arc ion plating system. The effect of pulsed bias duty ratio on the microstructure, mechanical and wear properties was investigated. The amount of macroparticles reduced with the increase of the duty ratio. The surface roughness was 0.0858 μm at duty ratio of 50%. TiN/TiAlN multilayer coatings were crystallized with orientations in the (1 1 1), (2 0 0) (2 2 2) and (3 1 1) crystallographic planes and the microstructure strengthened at (1 1 1) preferred orientation. At duty ratio of 20%, the hardness of TiN/TiAlN multilayer coatings reached a maximum of 3004 HV, which was 3.2 times that of the substrate. The adhesion strength reached a maximum of 77 N at 50% duty ratio. Friction and wear analyses were carried out by pin-on-disc tester at room temperature. Compared with the substrate, all the specimens coated with TiN/TiAlN multilayer coatings exhibited better tribological properties.  相似文献   

11.
Composite coatings using pure Al powder blended with α-Al2O3 as feedstock were deposited on AZ91D magnesium alloy substrates by cold spray (CS). The content of α-Al2O3 in the feedstock was 25 wt.% and 50 wt.%, respectively. The effects of α-Al2O3 on the porosity, microhardness, adhesion and tensile strength of the coatings were studied. Electrochemical tests were carried out in neutral 3.5 wt.% NaCl solution to evaluate the effect of α-Al2O3 on the corrosion behavior of the coatings. The results showed that the composite coatings possessed lower porosity, higher adhesion strength and tensile strength than cold sprayed pure Al coating. The corrosion current densities of the composite coatings were similar to that of the pure Al coating and much higher than that of bare AZ91D magnesium alloy.  相似文献   

12.
The paper presents the effect of HPD laser treatment on the microstructure and selected properties of the PVD CrN, (Ti,Al) and Ti(C,N) coatings deposited onto hot-work tool steel substrates. The microstructure and surface topography of the investigated samples are characteristic of the diversified morphology connected with the applied laser beam power. Employment of laser beam at 0.7 kW power to the laser treatment of samples with Ti(C,N) coatings causes clear coating adhesion growth because of the diffusive processes induced by heat release. Because of the higher value of the (Ti,Al)N absorption coefficient one can state that the observed substrate materials change and finally coatings destruction in case of those samples is the most noticeable. The moderate effect of the laser beam treatment of the hot-work tool steel with the PVD coating was observed for CrN coatings. However, for laser beam power above 0.5 kW differences in the thermal expansion coefficients of the substrate materials and coatings generate coating crackings.  相似文献   

13.
Nanoporous ZnO/SiO2 bilayer coatings were prepared on the surface of glass substrates via sol-gel dip-coating process. The structural, morphological and optical properties of the coatings were characterized. The refractive indices of ZnO layer and SiO2 layer are 1.34 and 1.21 at 550 nm, respectively. The transmittance and reflectance spectra of the coatings were investigated and the broadband antireflection performance of the bilayer structure was determined over the solar spectrum. The solar transmittances in the range of 300-1200 nm and 1200-2500 nm are increased by 6.5% and 6.2%, respectively. The improvement of transmittance is attributed to the destructive interference of light reflected from interfaces between the different refractive-index layers with an optimized thickness. Such antireflection coatings of ZnO/SiO2 provide a promising route for solar energy applications.  相似文献   

14.
The present study has been conducted in order to determine the influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings. Six types of coating samples with different substrate roughness were tested. The surface roughness and real surface area of both the substrates and coatings were studied by atomic force microscopy (AFM) techniques. The scratch tests performed at progressive loads were employed to evaluate the adhesion of the coatings. Cyclic oxidation tests were performed at 1100 °C in air for 50 cycles, each cycle consisting of 1 h heating in the tube furnace followed by 15 min cooling in the open air. The AFM measurements exhibit that the surface roughness of the sputtered NiCoCrAlY coating increases with the increasing of the superalloy substrate roughness. The NiCoCrAlY coatings present slightly lower roughness than the corresponding superalloy substrate. The scratch adhesion tests indicate that the coatings on substrates with a smoother surface possess better adhesion than on those with a rougher surface. Both the real surface area and oxidation weight gain of the coatings decrease with the decreasing of the superalloy substrate roughness. The NiCoCrAlY coating sputtered on the superalloy substrate with lower roughness provides relatively higher antioxidant protection than that provided by the coating with rougher substrate.  相似文献   

15.
In this paper, a new technology of direct and rapid thick coatings fabrication with hybrid plasma-laser deposition manufacturing (PLDM) technology is advanced which is also suitable for functional prototyping and tooling applications. It emphasizes on the influence of laser to the microstructure of coatings and physical properties of surface layers. Unlike the direct rapid plasma deposition manufacturing (PDM), in hybrid plasma-laser deposition manufacturing, the laser beam enters into plasma arc beam and focuses on the molten pool as assisting heat energy. A 280 W pulsed Nd:YAG (yttrium-aluminum garnet) laser machine is used to inspect the effect. The experimental results show that the laser beam could improve the surface state; the elements distribution of coatings deposited by PLDM was even; the physical properties of surface coatings fabricated with PLDM were better than that deposited by PDM.  相似文献   

16.
在有机玻璃上射频溅射ITO组合薄膜   总被引:1,自引:0,他引:1  
利用射频磁控溅射技术在有机玻璃表面上一次完成表面活化、ITO膜制备、SiO2 减反射膜制备过程。利用低能等离子体对有机玻璃表面进行改性以提高ITO膜的附着力。研究了氧分压等工艺参数对ITO膜导电性能及光学性能的影响。  相似文献   

17.
Boron nitride (BN) coatings were successfully synthesized on quartz fibers by dip-coating in boric acid and urea solutions at 700 °C. The SEM micrographs indicated that the quartz fibers were fully covered by coatings with smooth surface. The XRD, FT-IR, XPS spectra and HR-TEM results showed that the composition of the coatings which combined closely with the quartz fibers was polycrystalline h-BN. By changing the dip circles, the coating thickness was well controlled. The thicknesses of samples dipped less than six circles increased linearly with dipping-circles; and the increment of coating thickness would slow down when the fibers were dipped 10 circles. After being dipped for 10 circles, the thickness was about 300 nm. The coating thickness was also established by calculation and the calculated results were consistent with the results measured by micrograph.  相似文献   

18.
We have studied the wettability of sputter deposited ZnO, thermally oxidized Zn-ZnO and vacuum annealed ZnO coatings. The X-ray diffraction patterns showed the formation of hexagonal-wurtzite structure of ZnO, which was further confirmed by micro-Raman spectroscopy data. The X-ray photoelectron spectroscopy data indicated that the sputter deposited ZnO coatings were more stoichiometric than thermally oxidized Zn-ZnO and vacuum annealed ZnO coatings. The wettability measurements indicated that water contact angles of 158.5° and 155.2° with sliding angles of 2° and 4° were achieved for thermally oxidized Zn-ZnO and vacuum annealed ZnO coatings, respectively. The superhydrophobicity observed in thermally oxidized Zn-ZnO and vacuum annealed coatings is attributed to the nanorod cluster like morphology along with the presence of high fraction of micron scale air pockets. The water droplet on such surfaces is mostly in contact with air pockets rather than solid surface, leading to high contact angle. Whereas, the sputter deposited ZnO coatings exhibited a maximum water contact angle of 110.3°. This is because the sputter deposited ZnO coatings exhibited a densely packed nanograin-like microstructure without any air pockets. The work of adhesion of water was very low for thermally oxidized Zn-ZnO (5.06 mJ/m2) and vacuum annealed ZnO coatings (6.71 mJ/m2) when compared to reactively sputtered ZnO coatings (90.41 mJ/m2). The apparent surface free energy (SFE) for these coatings was calculated using Neumann method and the SFE values for sputter deposited ZnO, thermally oxidized Zn-ZnO and vacuum annealed ZnO coatings were 32.95, 23.21 and 18.78 mJ/m2, respectively.  相似文献   

19.
Hydroxyapatite (HA) coatings with different surface roughnesses were deposited on a Ti substrate via aerosol deposition (AD). The effect of the surface roughness on the cellular response to the coating was investigated. The surface roughness was controlled by manipulating the particle size distribution of the raw powder used for deposition and by varying the coating thickness. The coatings obtained from the 1100 °C-heated powder exhibited relatively smooth surfaces, whereas those fabricated using the 1050 °C-heated powder had network-structured rough surfaces with large surface areas and were superior in terms of their adhesion strengths and in vitro cell responses. The surface roughness (Ra) values of the coatings fabricated using the 1050 °C-heated powder increased from approximately 0.65 to 1.03 μm as the coating thickness increased to 10 μm. The coatings with a rough surface had good adhesion to the Ti substrate, exhibiting high adhesion strengths ranging from 37.6 to 29.5 MPa, depending on the coating thickness. The optimum biological performance was observed for the 5 μm-thick HA coating with an intermediate surface roughness value of 0.82 μm.  相似文献   

20.
Mo离子注入对金刚石涂层附着性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
采用Mo离子注入工艺对YG6硬质合金基体表面进行处理,用微波等离子体CVD(MPCVD)法沉积金刚石涂层,研究了Mo离子注入工艺对金刚石涂层附着性能的影响.结果表明,Mo离子注入后,硬质合金基体表面的化学成分发生了明显变化;采用适当剂量的Mo离子注入基体,可使CVD金刚石涂层的附着性能显著提高. 关键词: 金刚石涂层 Mo离子注入 硬质合金基体 附着性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号