首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dan Bai 《Applied Surface Science》2010,256(8):2643-1994
Free-standing multiwall carbon nanotubes (MWNTs) films were coated, using chemical vapor deposition method, with a thin layer of nanostructural ZnO. The morphology and crystal structure of the as-grown products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman scattering analyses. Field emission (FE) results demonstrated that the needle-like and spherical ZnO-MWNTs composite structure films possessed good performance with a turn-on field of 1.3, 2.2 V μm−1 and a threshold field of 2.6, 4.5 V μm−1, respectively. The glucose-sensing characteristic has also been studied. The multi-layer electrode (PDDA/GOx/ZnO/MWNTs) exhibited significant electrocatalysis to the oxidation and reduction of H2O2 than the PDDA/GOx/MWNTs electrode, which provided wide potential applications in clinical, environmental, and food analysis.  相似文献   

2.
Single-crystalline zinc oxide (ZnO) nanorods with cuboid morphology have been prepared on the zinc-filled porous silicon substrate using a vapor phase transport method. Field-emission measurements showed that the turn-on field and threshold field of the cuboid ZnO nanorods film were about 3.2 and 8.2 V/μm respectively. From the emitter surface, a homogeneous emission image was observed with emission site density (ESD) of ∼104 cm−2. The better emission uniformity and the high ESD may be attributed to a large number of ZnO nanocrystallites as emitter on the surface of the nanorod end contributing to emission.  相似文献   

3.
Vertically aligned ZnO nanorod arrays with different aspect ratios were synthesized by hybrid wet chemical route. Modulation of the field emission properties (FE) with aspect ratio of ZnO nanorods was examined. With the increase in the aspect ratio, the emission current density increases from 0.02 to 8 μA/cm2 at 7.0 V/μm. Turn-on voltage was seen to decrease from 9.6 to 7 V/μm at a current density of 10 μA/cm2 with the increase in aspect ratio in the ZnO films. The interrelation between the FE characteristics (emission thresholds, current density, surface uniformity, etc.) and microstructure of the ZnO nanostructure obtained from scanning electron microscopy (SEM) and atomic force microscopy (AFM) was discussed. Quality of the ZnO nanorods was also examined by using Raman spectroscopy and Fourier transformed infrared spectroscopy (FTIR). It was found that the observed enhancements of FE characteristics could mainly be attributed to the increase in aspect ratio and associated number density of ZnO nanorods.  相似文献   

4.
Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm−1 (0.01 mA cm−2) and threshold field of 11.35 V μm−1 (1 mA cm−2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.  相似文献   

5.
Single-crystalline, pyramidal zinc oxide nanorods have been synthesized in a large quantity on p-Si substrate via catalyst-free thermal chemical vapor deposition at low temperature. SEM investigations showed that the nanorods were vertically aligned on the substrate, with diameters ranging from 60 to 80 nm and lengths about 1.5 μm. A self-catalysis VLS growth mechanism was proposed for the formation of the ZnO nanorods. The field emission properties of the ZnO nanopyramid arrays were investigated. A turn-on field about 3.8 V/μm was obtained at a current density of 10 μA/cm2, and the field emission data was analyzed by applying the Fowler-Nordheim theory. The stability of emission current density under a high voltage was also tested, indicating that the ZnO nanostructures are promising for an application such as field emission sources.  相似文献   

6.
ZnO nanorod arrays were synthesized by chemical-liquid deposition techniques on MgxZn1−xO (x = 0, 0.07 and 0.15) buffer layers. It is found that varying the Mg concentration could control the diameter, vertical alignment, crystallization, and density of the ZnO nanorods. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) data show the ZnO nanorods prefer to grow in the (0 0 2) c-axis direction better with a larger Mg concentration. The photoluminescence (PL) spectra of ZnO nanorods exhibit that the ultraviolet (UV) emission becomes stronger and the defect emission becomes weaker by increasing the Mg concentration in MgxZn1−xO buffer layers.  相似文献   

7.
We have prepared nanostructured thin films of germanium and silicon. The films were grown by an ion beam sputtering technique followed by a rapid annealing step using an electron beam annealer. The annealing temperature is a comparatively low 500 °C, resulting in well defined nano-islands on the film surface. Electron field emission has been measured from the surfaces under high vacuum. The threshold electric field value for significant current flow was measured as 2.5 V μm−1 for a silicon thin film which is comparable to other silicon technologies. A value of 0.5 V μm−1 for a germanium thin film represents an order of magnitude improvement for related germanium nanostructured systems.  相似文献   

8.
Chemical spray pyrolysis was applied to grow ZnO nanorod arrays from zinc chloride solutions with pH=2 and 5 on glass/ITO substrate at 480 and 550 °C. The obtained structures were characterized by their morphological, electrical and PL properties. According to SEM, deposition of acidic solutions retards coalescence of the growing crystals. The charge carrier density in ZnO nanorods was determined from the C-V characteristics of ZnO/Hg Schottky barrier. Carrier densities ∼1015 cm−3 and slightly above 1016 cm−3 were recorded for ZnO deposited at 550 and 480 °C, respectively. According to PL studies, intense UV-emission is characteristic of ZnO independent of growth temperature, the concentration of oxygen vacancy related defects is lower in ZnO nanorods deposited at 550 °C. Solution pH has no influence on carrier density and PL properties.  相似文献   

9.
High quality vertical-aligned ZnO nanorod arrays were synthesized by a simple vapor transport process on Si (111) substrate at a low temperature of 520 °C. Field-emission scanning electron microscopy (FESEM) showed the nanorods have a uniform length of about 1 μm with diameters of 40-120 nm. X-ray diffraction (XRD) analysis confirmed that the nanorods are c-axis orientated. Selected area electron diffraction (SAED) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) measurements were adopted to analyze the optical properties of the nanorods both a strong UV emission and a weak deep-level emission were observed. The optical properties of the samples were also tested after annealing in oxygen atmosphere under different temperatures, deep-level related emission was found disappeared at 600 °C. The dependence of the optical properties on the annealing temperatures was also discussed.  相似文献   

10.
ZnO nanocapsules have been synthesized hydrothermally. The structural and morophological properties were investigated using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), FTIR, Raman, EDS and UV-vis absorption spectroscopy. For the first time chemical sensing properties of the synthesized ZnO nanocapsules have been investigated by I-V technique, where chloroform is used as a target compound. The chloroform sensors show good sensitivity (0.478 μA cm−2 mM−1), lower detection limit (6.67 μM), and large linear dynamic range (LDR, 12.0 μM-12.0 mM) with good linearity (R, 0.8523) in short response time. Additionally, photocatalytic activity of the prepared capsule shaped ZnO photocatalyst was evaluated by the degradation of acridine orange. Prepared ZnO nanocapsules posses high photocatalytic activity when compared with TiO2-UV100.  相似文献   

11.
Carbon nanofibers were grown by electrodeposition technique onto aligned zinc oxide (ZnO) nanorods deposited by hybrid wet chemical route on glass substrates. X-ray diffraction traces indicated very strong peak for reflections from (0 0 2) planes of ZnO. The Raman spectra were dominated by the presence of G band at about 1597 cm−1 corresponding to the E2g tangential stretching mode of an ordered graphitic structure with sp2 hybridization and a D band at about 1350 cm−1 originating from disordered carbon. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peak at ∼511 cm−1 for Zn-O stretching mode. Photoluminescence spectra indicated band edge luminescence of ZnO at ∼3.146 eV along with a low intensity peak at ∼0.877 eV arising out of carbon nanofibers. Field emission properties of these films and their dependence on the CNF coverage on ZnO nanorods are reported here. The average field enhancement factor as determined from the slope of the FN plot was found to vary between 1 × 103 and 3 × 103. Both the values of turn-on field and threshold field for CNF/ZnO were lower than pure ZnO nanorods.  相似文献   

12.
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10−1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ∼600 nm.  相似文献   

13.
Al and Sb codoped ZnO nanorod ordered array thin films have been deposited on glass substrate with a ZnO seed layer by hydrothermal method at different growth time. The effect of growth time on structure, Raman shift, and photoluminescence (PL) was studied. The thin films at growth time of 5 h consist of nanorods growth vertically oriented with ZnO seed layer, and the nanorods with an average diameter of 27.8 nm and a length of 1.02 μm consist of single crystalline wurtzite ZnO crystal and grow along [0 0 1] direction. Raman scattering analysis demonstrates that the thin films at the growth time of 5 h have great Raman shift of 15 cm−1 to lower wavenumber and have low asymmetrical factor Гa/Гb of 1.17. Room temperature photoluminescence reveals that there is more donor-related PL in films with growth time of 5 h.  相似文献   

14.
In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.  相似文献   

15.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

16.
The Cu/ZnO nanocomposite films have been synthesized by cathodic electrodeposition and characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) and field emission microscope (FEM). The XRD pattern shows a set of well defined diffraction peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. In addition, characteristic diffraction peaks corresponding to Cu and Zn are also observed. The SEM image shows formation of two-dimensional (2D) hexagonal sheets randomly distributed and aligned almost normal to the substrate. Uniformly distributed small clusters of Cu nanoparticles possessing average diameter of ∼25 nm, as revealed from the TEM image, are seen to be present on these 2D ZnO sheets. The selected area electron diffraction (SAED) image confirms the nanocrystalline nature of the Cu particles. From the field emission studies, carried out at the base pressure of ∼1 × 10−8 mbar, the turn-on field required for an emission current density of 0.1 μA/cm2 is found to be 1.56 V/μm and emission current density of ∼100 μA/cm2 has been drawn at an applied field of 3.12 V/μm. The Cu/ZnO nanocomposite film exhibits good emission current stability at the pre-set value of ∼10 μA over a duration of 5 h. The simplicity of the synthesis route coupled with the better emission properties propose the electrochemically synthesized Cu/ZnO nanocomposite film emitter as a promising electron source for high current density applications.  相似文献   

17.
The hydrothermal growths of the ZnO nanorods with the densities ranging from 157 to 73 nanorods/μm2 were achieved by diluting the ZnO seed solution. However, the ZnO seed nanocrystals started to agglomerate for the seed solution diluted below 1% of the original nano-crystalline solutions and resulted in the formation of clustered nanorods. With the assistance of a surfactant, Triton X-100, the nanorod density can be further reduced to 4 nanorods/μm2. The diameters of the nanorods depended on the concentration of the seed solution and agitation speed of the nanorod growth solution. More diluted seed solution used and less agitation of the growth solution, the larger diameter of the nanorods was obtained. This indicated that the nanorod growth mechanism was controlled by the diffusion of reactants. With sufficient agitation of the growth solution, the nanorod can be uniformly grown with subjects on any arbitrary geometry. We have demonstrated ZnO nanorods growth on both inside and outside of biliary stents as well as on nitinol wires used as metal stents. The effect of nanorod density on the NIH 3T3 and HUVEC cells growth was also investigated in this study and the results suggested nanorod-coating to be a suitable method for controlling cell adhesion and viability on implantable devices.  相似文献   

18.
High quality ZnO films were grown on c-plane sapphire substrate using low temperature ZnO buffer layer by plasma-assisted molecular beam epitaxy. The film deposited at 720 °C showed the lowest value of full-width at half maximum for the symmetric (0002) diffraction peak of about 86 arcsec. The highest electron mobility in the films was about 103-105 cm2/V s. From temperature-dependent Hall effect measurements, the mobility strongly depends on the dislocation density at low temperature region and the polar optical phonon scattering at high temperature, respectively. Moreover, by obtaining the activation energy of the shallow donors, it was supposed that hydrogen was source of n-type conductivity in as-grown ZnO films.  相似文献   

19.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

20.
ZnO nanospheres were synthesized by a wet-chemical method. X-ray diffraction and field-emission scanning electron microscopy confirmed the formation of wurtzite-structured ZnO with regular sphere shape. Two Raman modes located at 333 cm−1 and 437 cm−1 with two additional Raman humps centered at 577 cm−1 and 1077 cm−1 were observed. Photoluminescence spectra showed ultraviolet, green, orange and red emissions, which changed significantly after the samples were annealed in air, oxygen, argon and forming gas four different ambiences. All the evidence indicates that surface states are responsible to orange and red emissions in addition to excitonic recombination (3.18 eV) and oxygen vacancy (2.25 eV) emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号