首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal matrix composites reinforced with nano-sized particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Ni-SiC composites have gained widespread application for the protection of friction parts in the automobile industry. The influence of variables like SiC content, current density and stirring speed on microhardness of nano-composite coatings has been studied. The improved microhardness was associated with the reduction in crystallite size determined by X-ray diffraction studies. The influence of incorporation of nano-SiC in hardened Ni-Co alloy matrix was also studied. It was observed that for 28 wt.% Co content in the matrix the microhardness was higher compared to 70 wt.% for a given nano-SiC content. This was associated to the crystal phase of Ni-28Co-SiC being fcc compared to hcp phase exhibited by Ni-70Co-SiC. The wear resistance of pure Ni, Co and nano-composite coatings was studied using pin-on-disc wear tester under dry sliding condition. The volumetric wear loss indicated that, the wear resistance of Ni-SiC nano-composite is better than that of pure nickel deposit. The wear resistance of Ni-Co composites was observed to be superior to Ni composite. The wear behaviour of Ni and Ni-28Co composite was in accordance with the Archard's law. However, the superior wear characteristic exhibited by Ni-70Co-SiC composite followed the reverse Archard's behaviour.  相似文献   

2.
Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L−1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating.  相似文献   

3.
Ni-SrSO4 composite coatings were electrodeposited on superalloy Inconel 718 from a Watts electrolyte containing a SrSO4 suspension. Ni-SrSO4 coatings were investigated by scanning electron microscope, microhardness tester, and friction and wear tester in sliding against a bearing steel ball under unlubricated condition. The incorporation of SrSO4 into Ni matrix increases the microhardness of electrodeposited coatings. Ni-SrSO4 composite coating exhibits a distinctly low friction coefficient and a small wear rate as contrasted with pure Ni coating and the substrate. The effect of SrSO4 particles on microstructure and tribological properties of Ni-SrSO4 composite coatings is discussed.  相似文献   

4.
Advances in materials performance often require the development of composite system. In the present investigation, SiO2-reinforced nickel composite coatings were deposited on a mild steel substrate using direct current electrodeposition process employing a nickel acetate bath. Surface morphology, composition, microstructure and crystal orientation of the Ni and Ni-SiO2 nanocomposite coatings were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction analysis, respectively. The effect of incorporation of SiO2 particles in the Ni nanocomposite coating on the microhardness and corrosion behaviour has been evaluated. Smooth composite deposits containing well-distributed silicon oxide particles were obtained. The preferred growth process of the nickel matrix in crystallographic directions <111>, <200> and <220> is strongly influenced by SiO2 nanoparticles. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~23 nm for electrodeposited nickel and ~21 nm for Ni-SiO2 nanocomposite coatings. The crystallite structure was fcc for electrodeposited nickel and Ni-SiO2 nanocomposite coatings. The incorporation of SiO2 particles into the Ni matrices was found to improve corrosion resistance of pure Ni coatings. The corrosion potential (E corr) in the case of Ni-SiO2 nanocomposite coatings had shown a negative shift, confirming the cathodic protective nature of the coating. The Ni-SiO2 composite coatings have exhibited significantly improved microhardness (615 HV) compared to pure nickel coatings (265 HV)  相似文献   

5.
A novel supersonic plasma spraying was used to prepare rare earth oxide added Cr3C2-NiCr coatings. X-ray diffractometer, contact surface profiler, hardness tester, micro-friction and -wear tester, environmental scanning electron microscope equipped with energy dispersive spectroscopy were employed to investigate the phase structure, surface morphology, microhardness, and friction properties of deposited coatings, respectively. The results show that surface roughness, microhardness, brittle fracture, friction extent and wear resistance of rare earth oxide added Cr3C2-NiCr coatings are effectively improved compared with that of unadded one. The friction and friction mechanism are also discussed.  相似文献   

6.
Three kinds of laser boronizing composite coatings were in situ synthesized on Ti substrate by using powders of B, BN and B4C as starting materials. Microstructures of the laser boronizing composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM); and their worn surface morphologies were also observed by using SEM. Moreover, the friction and wear behavior of the boronizing composite coatings under dry sliding condition were evaluated using a UMT-2MT friction and wear tester. It was found that all the three types of laser boronizing composite coatings had higher microhardness and better wear resistance than pure Ti substrate; and their microstructure and wear resistance varied with varying pre-placed powders of B, BN, and B4C. Under the same dry sliding test conditions, the wear resistance of the three kinds of laser boronizing composite coatings, i.e., sample 1 prepared from pre-placed B, sample 2 obtained from pre-placed BN, and sample 3 fabricated from pre-placed B4C, is ranked in an order of sample 1 > sample 2 > sample 3, which, surprisingly, well conforms to their order of hardness and friction coefficients.  相似文献   

7.
Structural-phase states and mechanical properties of coatings welded onto Hardox 400 steel using En-DOtecDO*30, EnDOtecDOtec*33, and SK A 70-G weld wires are investigated via X-ray structural analysis, optical and scanning electron microscopy, and measuring microhardness, wear resistance, and friction coefficients. It is shown that the coatings had microhardnesses and wear resistances were higher than those of their substrate by factors of 2–3 and 2, respectively, while the friction coefficients of coatings were lower than those of the substrates by a factor of 1.2. Hardening was due to the formation of disperse structures containing up to 40 vol % of Fe3C, Fe23(C, B)6, NbC, Fe3B, and Fe3Si0.97 particles.  相似文献   

8.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

9.
Ni–Y2O3 nanocomposite coatings were prepared under direct current (DC) and pulse current (PC) using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM, AFM, and EIS. The results showed that the microstructure and performances of the coatings were greatly affected by Y2O3 content on the deposits prepared by DC and PC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of Y2O3 composite coatings. The PC composite coatings were exhibited compact surface, higher microhardness, and good corrosion resistance compared with that of the DC composite coatings.  相似文献   

10.
Wear-resistant coatings were prepared on the surface of the Q235 low-carbon steel plate by HVAS with the carbonitride alloying self-shielded flux-cored wire. Detection and analysis on the microstructure and properties of the coatings were carried out by using scanning electron microscope, microhardness tester and wear tester. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that the coatings have good forming, homogeneous microstructure and compact structure. The coatings have good hardness, the average microhardness value reaches 520 HV0.1, and the highest value is up to about 560 HV0.1. As a result, the coatings have good abrasive wear performance and adhesion strength.  相似文献   

11.
The structural state and tribological properties of gradient and composite antifriction coatings produced by pulsed laser codeposition from MoSe2(Ni) and graphite targets are studied. The coatings are deposited onto steel substrates in vacuum and an inert gas, and an antidrop shield is used to prevent the deposition of micron-size particles from a laser jet onto the coating. The deposition of a laser jet from the graphite target and the application of a negative potential to the substrate ensure additional high-energy atom bombardment of growing coatings. Comparative tribological tests performed at a relative air humidity of ∼50% demonstrate that the “drop-free” deposition of a laser-induced atomic flux in the shield shadow significantly improves the antifriction properties of MoSe x coatings, decreasing the friction coefficient from 0.07 to 0.04. The best tribological properties, which combine a low friction coefficient and high wear resistance, are detected in drop-free MoSe x coatings additionally alloyed with carbon (up to ∼55 at %) and subjected to effective bombardment by high-energy atoms during growth. Under these conditions, a dense nanocomposite structure containing the self-lubricating MoSe2 phase and an amorphous carbon phase with a rather high concentration of diamond bonds forms.  相似文献   

12.
Plasma electrolytic oxidation (PEO) was applied on the surface of commercially pure titanium substrates in a mixed aluminate-phosphate electrolyte in the presence of silicon nitride nanoparticles as suspension in the electrolyte in order to fabricate nanocomposite coatings. Pulsed current was applied based on variable duty cycle in order to synthesize functionally gradient coatings (FGC). Different rates of variable duty cycle (3, 1.5 and 1%/min), applied current densities (0.06-0.14 A/cm2) and concentrations of nanoparticles in the electrolyte (2, 4, 6, 8 and 10 g l−1) were investigated. The nanopowder and coated samples were analyzed by atomic force microscope, scanning electron microscope and transmission electron microscope. The influence of different rates of variable duty cycle (or treatment times) on the growth rate of nanocomposite coatings and their microhardness values was investigated. The experimental results revealed that the content of Si3N4 nanoparticulates in the layer increases with the increase of its concentration in the plasma electrolysis bath. Nanocomposite coatings fabricated with lower rate of variable duty cycle have higher microhardness with smoother microhardness profile.  相似文献   

13.
The friction wear of surfaces of 40Cr (40Khr) structural steel and 12Cr18Ni10Ti (12Kh18N10T) stainless steel is investigated. It is established, by comparison of the wear of initially annealed 40Cr steel after hardening by radiation from a CO2 laser to various degrees of surface microhardness and separately after volume heat treatment, that the wear is due to fatigue in the entire range of microhardness, regardless of the dispersive properties of the structures. It is shown that the resistance to wear tends to increase with increase of the microhardness of the bearing surfaces. The dependence of the rate of wear on the surface microhardness is obtained. It is found that the wear process is accompanied by formation of a special structurally stressed state in the Saint-Venant region; this state is characterized by a constant hardness level independently of the preceding state of the material.Translation of Preprint No. 196, Lebedev Institute of Physics, Academy of Sciences, USSR, Moscow (1990).  相似文献   

14.
ZrO2 nanoparticles was uniformly co-deposited into a nickel matrix by electroplating of nickel from a Watts bath containing particles in suspension which were monodispersed with dispersant under DC electrodeposition condition. It was found that morphology, orientation and hardness of the nanocomposite coatings with monodispersed ZrO2 nanoparticles had lots of difference from the nanocomposite coatings with agglomerated ZrO2 nanoparticles and pure nickel coatings. Especially, the result of hardness showed that only a very low volume percent (less than 1 wt.%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 nanocomposite coatings would result in higher hardness of the coatings. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles were 529 and 393 HV, respectively. The hardness value of the former composite coatings was over 1.3 times higher than that of the later. All these composite coatings were two-three times higher than that of pure nickel plating (207 HV) prepared under the same condition. The strengthening mechanisms of the Ni-ZrO2 nanocomposite coatings based on a combination of grain refinement strengthening from nickel matrix grain refining and dispersion strengthening from dispersion state of ZrO2 nanoparticles in the coatings.  相似文献   

15.
Ni-Co/nano TiO2 (Ni-Co-TiO2) composite coatings were prepared under pulse current and pulse reverse current methods using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM and EIS. Both the Ni-Co alloy and composite coatings exhibited single phase of Ni matrix with face centered cubic (fcc) crystal structure. The crystal orientation of the Ni-Co-TiO2 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with Ni-Co alloy coatings. The results showed that the microstructure and performances of the coatings were greatly affected by TiO2 content on the deposits prepared by PC and PRC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of TiO2 composite coatings. The PRC composite coatings were exhibited from compact surface, higher microhardness and good corrosion resistance compared with that of the PC composite coating.  相似文献   

16.
Anodized composite films containing superfine Al2O3 and PTFE particles were prepared on 2024 Al alloy using an anodizing method. The microstructures and properties of the films were studied by scanning electron microscopy, optical microscopy and X-ray diffraction. Friction wear tests were performed to evaluate the mechanical properties of the composites. Results indicate that the composite films with reinforced Al2O3 and PTFE two-particles have reduced friction coefficients and relatively high microhardness. The friction coefficient can be as small as 0.15, which is much smaller than that of an oxide film prepared under the same conditions but without adding any particles (0.25), while the microhardness can reach as high as 404 HV. When rubbed at room temperature for 20 min during dry sliding friction tests, the wear loss of the film was about 16 mg, which is about the half of that of the samples without added particles. The synthesized composite films that have good anti-wear and self-lubricating properties are desirable for oil-free industrial machinery applications.  相似文献   

17.
Low cost arc spraying and cored wires were used to deposit composite coatings consisting of TiB2 and TiB2/Al2O3 hard particles in a Ni(Cr) and stainless steel 304L matrix. Four coatings were prepared namely Ni(Cr)-TiB2, Ni(Cr)-TiB2/Al2O3, 304L-TiB2 and 304L-TiB2/Al2O3. The microstructural characteristics of powders and coatings were observed by scanning electron microscopy (SEM). Phase compositions of powders were analyzed by X-ray diffraction (XRD). Although all the analyzed coatings exhibited similar lamella structure, remarkable differences not only in the morphology of hard phase and matrix but also in the size and distribution of hard phases were observed from one coating to another. Tribological behavior of the coatings was analyzed in room temperature dry sliding wear tests (block-on-ring configuration), under 75 N at low velocity (0.5 m/s). The coatings showed far high wear resistance than low carbon steel substrate under same conditions examined. Wear loss of 304L-TiB2 and Ni(Cr)-TiB2 coatings were lower nearly 15 times than that of steel substrate. TiB2 hard phases in coatings bonded well with metal matrix contributed to high wear resistance.  相似文献   

18.
Compositionally gradient CrNx coatings were fabricated using arc ion plating by gradually increasing N2 flow rate during the deposition process. The effect of substrate bias, ranging from 0 to −250 V, on film microstructure and mechanical properties were systematically investigated with XRD, SEM, HRTEM, nanoindentation, adhesion and wear tests. The results show that substrate bias has an important influence on film microstructure and mechanical properties of gradient CrNx coatings. The coatings mainly crystallized in the mixture of hexagonal Cr2N, bcc Cr and fcc rock-salt CrN phases. N2 flow rate change during deposition results in phase changes in order of Cr, Cr + Cr2N, Cr2N, Cr2N + CrN, and CrN, respectively, along thickness direction. Phase fraction and preferred orientation in CrNx coatings vary with substrate bias, exerting an effective influence on film hardness. With the increasing of bias, film microstructure evolves from an apparent columnar structure to a highly dense one. The maximum hardness of 39.1 GPa was obtained for the coatings deposited at a bias of −50 V with a friction coefficient of 0.55. It was also found that adhesion property and wear resistance of gradient CrNx coatings were better than that of homogeneous CrN coatings.  相似文献   

19.
Microarc oxidation coatings on AM60B magnesium alloy were prepared in silicate and phosphate electrolytes. Structure, composition, mechanical property, tribological, and corrosion resistant characteristics of the coatings was studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness analyses, and by ball-on-disc friction and potentiodynamic corrosion testing. It is found that the coating produced from the silicate electrolyte is compact and uniform and is mainly composed of MgO and forsterite Mg2SiO4 phases, while the one formed in phosphate electrolyte is relatively porous and is mainly composed of MgO phase. The thick coating produced from a silicate electrolyte possesses a high hardness and provides a low wear rate (3.55 × 10−5 mm3/Nm) but a high friction coefficient against Si3N4 ball. A relatively low hardness and friction coefficient while a high wear rate (8.65 × 10−5 mm3/Nm) is recorded during the testing of the thick coating produced from a phosphate electrolyte. Both of these types of coatings provide effective protection for the corrosion resistance compared with the uncoated magnesium alloy. The coating prepared from the silicate electrolyte demonstrates better corrosion behavior due to the compacter microstructure.  相似文献   

20.
CrN, TiCN and TiAlN coatings were deposited on WC cemented carbide disks using enhanced cathodic arc magnetron sputtering and their topographies and structures were observed and analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The friction and wear properties of CrN, TiCN and TiAlN coatings sliding against SiC balls in water were investigated and compared synthetically using ball-on-disk tribometer. The results showed that the CrN/SiC tribopairs showed the lowest friction coefficient of 0.076, while the TiCN/SiC tribopairs displayed the highest friction coefficient of 0.264. For the CrN/SiC tribopairs the specific wear rate of CrN coatings was lowest while that of SiC balls became highest. But for the TiAlN(TiCN)/SiC tribopairs, the specific wear rate of TiAlN coatings was highest while that of SiC balls for the TiCN/SiC tribopairs became lowest. This indicated that the friction and wear behaviors of nitride coatings/SiC balls tribo-systems in water were more strongly influenced by the anti-oxidative ability of tribomaterials in water than by their mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号