首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed analysis of the monolithical series connection of thin-film silicon modules with ZnO/Ag back contact is presented. In this study, pulsed lasers with wavelengths of 1064 nm and 532 nm were used. The influence of various laser parameters like laser power, pulse overlap, etc., on the different patterning steps is discussed. The focus of this study was on the back contact patterning process. Here (i) the flake formation process during the ablation and (ii) the influence of a NIR-laser source as an alternative approach to the green laser were investigated in detail. The latter would reduce system costs if only one NIR-laser source could be used for all patterning steps.  相似文献   

2.
Interaction of a nanosecond transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm, with tungsten-titanium thin film (190 nm) deposited on silicon of n-type (1 0 0) orientation, was studied. Multi-pulse irradiation was performed in air atmosphere with laser energy densities in the range 24-49 J/cm2. The energy absorbed from the laser beam was mainly converted to thermal energy, which generated a series of effects. The following morphological changes were observed: (i) partial ablation/exfoliation of the WTi thin film, (ii) partial modification of the silicon substrate with formation of polygonal grains, (iii) appearance of hydrodynamic features including nano-globules. Torch-like plumes started appearing in front of the target after several laser pulses.  相似文献   

3.
Interaction of an Nd:YAG laser, operating at 532 nm wavelength and pulse duration of 40 ps, with tungsten-titanium (WTi) thin film (thickness, 190 nm) deposited on single silicon (100) substrate was studied. Laser fluences of 10.5 and 13.4 J/cm2 were found to be sufficient for modification of the WTi/silicon target system. The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following WTi/silicon surface morphological changes were observed: (i) ablation of the thin film during the first laser pulse. The boundary of damage area was relatively sharp after action of one pulse whereas it was quite diffuse after irradiation with more than 10 pulses; (ii) appearance of some nano-structures (e.g., nano-ripples) in the irradiated region; (iii) appearance of the micro-cracking. The process of the laser interaction with WTi/silicon target was accompanied by formation of plasma.  相似文献   

4.
In 2000, Campbell et al. (Nature 404:53, 2000) have shown that three-dimensional periodic nanostructures can be obtained from UV laser interference irradiation of photoresist for 6 nanosecond single pulse. We have developed a similar experiment for photolytic gas phase decomposition and for photopatternable organic–inorganic hybrid resins. Different steps in results, presently reported, were first to determine the characteristics of both the 3D interference pattern and interferometer to be associated to a CVD reactor and second to verify the mechanical stability of the set up confirmed with the structuration of a siloxane based methacrylic resins by UV polymerization and finally to grow periodic nanostructures by photolytic gas phase decomposition of chromyl chloride. The experimental results obtained so far indicate that, depending on the electromagnetic energy density, a vapor phase decomposition of chromyl chloride leads to periodic arrays of either Cr–O amorphous or Cr2O3 particles on glass and (001)TiO2 substrates at room temperature.  相似文献   

5.
Laser patterning of thin-film solar cells is essential to perform external serial and integrated monolithic interconnections for module application and has recently received increasing attention. Current investigations show, however, that the efficiency of thin-film Cu(In,Ga)Se2 (CIGS) modules is reduced due to laser scribing also with ultrashort laser pulses. Hence, to investigate the reasons of the laser-induced material modifications, thin-film CIGS solar cells were laser-scribed with femto- and picosecond laser pulses using different scribing procedures and laser processing parameters. Besides standard electrical current voltage (IV) measurements, additional electrical and optical analysis were performed such as laser beam-induced current (LBIC), dark lock-in thermography (DLIT), and electroluminescence (EL) measurements to characterize and localize electrical losses due to material removal/modifications at the scribes that effecting the electrical solar cell properties. Both localized as well as distributed shunts were found at laser scribe edges whereas the laser spot intensity distribution affecting the shunt formation. Already laser irradiation below the ablation threshold of the TCO film causes material modification inside the thin film solar cell stack resulting in shunt formation as a result of materials melting near the TCO/CIGS interface that probably induces the damage of the pn-junction.  相似文献   

6.
The nanostructuring of dielectrics is a big challenge for laser patterning methods. In this study a novel laser structuring method for the fabrication of randomly distributed nanostructures, called laser-induced front side etching using in situ pre-structured metal layers (IPSM-LIFE), is presented. The pulsed laser irradiation of a thin metal film deposited onto a dielectric substrate with fluences below the ablation threshold results in the formation of randomly distributed metal structures by self-assembly processes. Further pulsed laser irradiation of these metal structures with higher or equal laser fluences causes the formation of complex patterns at the surface of the dielectric due to localized ablation and melting processes of the dielectric surface induced by the absorption of the laser energy by the metal structures and the local energy transfer into the dielectric surface. The pattern formation observed in the film and the dielectrics substrate after irradiation of 10 nm chromium layers on fused silica, with laser pulses (Δt p =25 ns, λ=248 nm), was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features with a lateral size down to a few tens of nanometers, like concentric ring patterns, donut-like structures, and bar patterns were observed at the dielectric.  相似文献   

7.
Nanoparticles were synthesized by irradiating a nickel target with femtosecond laser pulses in high vacuum, and subsequently analyzed. The proof-of-principle experiments aim to modify the size characteristics of the produced nanoparticles. For nickel it is found that: (i) ultraviolet laser pulses lead to a remarkable change in the nanoparticles size distribution with respect to visible laser pulses; (ii) irradiation of the femtosecond pulses induced ablation plume with a second, delayed ultraviolet laser pulse can change the size characteristics of the produced nanoparticles.  相似文献   

8.
The interactions between femtosecond (fs) laser pulses and a thin Au film deposited on a silica glass substrate were systematically investigated based on experimental data. Different structures, including microholes, nanoholes, and nanobumps, are obtained when pulses with different energies are incident on the surface of a gold film. The experimental results are discussed according to specific experimental parameters. Two physical models were constructed in order to explain the experimental results. The formation of nanoholes in a silica substrate is attributed to etching by higher order harmonic generations (HHG) when the femtosecond laser pulse interacts with the generated plasma layer, while the formation of nanobumps on the surface of an Au film is attributed to the elastic and plastic characteristics of the metal film under laser pulse irradiation.  相似文献   

9.
Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.  相似文献   

10.
In this study, results in the irradiation of stainless steel AISI 304 in air with nanosecond laser pulses at laser irradiation power density 4×107 W/cm2 are reported. Laser processing parameters, such as wavelengths 532 and 1064 nm, pulse duration 20 ns and repetition rate 10 Hz were used. It is shown that the surface morphology of the stainless steel is related to the number of pulses applied to the same spot. The following surface morphological changes were observed: (i) occurrence of the micro-grains microstructures at wavelengths 532 and 1064 nm after 10 000 pulses irradiation and (ii) occurrence of vermiform-like microstructures at wavelength 1064 nm after 1000 pulses irradiation. Generally, it is concluded that irradiation due to several consecutive pulses caused significant damage and enhanced the stainless steel surface roughness.  相似文献   

11.
For the development of organic electronics on flexible substrates, we study the potentialities of direct laser patterning of conductive films deposited on plastic foils. The materials under study are silver and platinum films (100-nm thick) deposited on Kapton® substrates. The experiments are done using a laser source operating at 1030 nm, 500 fs, under different irradiation conditions: single and multiple pulses at various frequencies. The laser ablation thresholds are measured and the ablation morphologies are analyzed with scanning electron microscopy. The results of these investigations show that photomechanical effects lead to delamination of the film and that depending of the irradiation conditions, incubation or heat accumulation effects can occur. The experimental results are compared to simulations based on the two-temperature model. Particularly we study the heat accumulation effects that can occur in the case of multiple pulses and that are detrimental for plastic substrates.  相似文献   

12.
The selective removal and patterning of a typical pseudo-spin-valve structure, consisting of a Co(20 nm)/ Cu(6 nm)/Co(3 nm) trilayer, by femtosecond laser has been examined in terms of irradiation parameters and layer structure. Ablation thresholds of the individual Co and Cu thin films and the SiO2/Si substrate have been measured for single-shot irradiation with a 200 femtosecond (fs) laser pulses of a Ti:sapphire laser operating at 775 nm. Ablation of the entire trilayer structure was characterized by a sequential removal of the layers at a threshold level of fluence of 0.28 J/cm2. Atomic Force Microscopy, optical microscopy, profilometry and Sputtered Neutral Mass Spectroscopy were employed to characterize the laser-induced single-shot laser selective removal and patterned areas. As a result, two phenomena were found to characterize the laser process: (i) selective removal of the Co and Cu layer due to the change of the laser fluence and (ii) regular pillars’ area of Co/Cu/Co could be achieved in a regular manner with the lowest pillar width size of 1.5 μm. Ablation through the layers was accompanied by the formation of bulges at the edges of the pillars, which was the biggest inconvenience in lowering the pillar size through the femtosecond laser process.  相似文献   

13.
Selectiveness of the laser processing is the top-most important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.  相似文献   

14.
In order to analyse ancient textiles to identify the fibre, a proper cleaning of the sample is necessary. The anaerobic environment (i.e., the peatery), aiding the preservation of handmade textiles, often impregnates the textiles in such a way that the usual chemical procedures for cleaning are not sufficient while making the sample brittle. The use of laser pulses may offer an alternative method of cleaning. Four different textiles (wool, silk, flax, and cotton) have been investigated. As a first step we used laser irradiation on untreated samples to investigate the laser induced effects on textile materials. As a second step, consolidated samples, samples artificially aged (i.e., samples exposed to a lacustrine environment), and samples both artificially aged and consolidated were irradiated. Several combinations of the main laser parameters (energy density and number of pulses) were tested in order to find the best irradiation conditions. Scanning electron microscopy (SEM) was used to analyze the induced morphological changes. The obtained results are well reproducible while proving the very high efficiency in material removal of the laser pulses: in the four investigated textiles, the laser cleaning procedure permitted the identification of the fibres. PACS 79.20.Ds; 61.80.Bd  相似文献   

15.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

16.
The fluorine-doped tin oxide (FTO) thin film deposited on a soda-lime glass substrate was annealed by a defocus ultraviolet (UV) laser irradiation at ambient temperature. The mechanical and optoelectric properties of FTO films annealed by using the various laser processing parameters were reported. After the FTO films were subjected to laser post-annealing, the microhardness were slightly less but the reduced modulus values were larger than that of unannealed FTO films, respectively. The average optical transmittance in the visible waveband slightly increased with increasing the laser annealing energy and scan speed. Moreover, all the sheet resistance of laser annealed films was less than that of the unannealed ones. We found that the sheet resistance decrease was obviously influenced by annealing. The suitable annealing conditions could maintain the film thickness and relief the internal stress generated in the film preparation process to improve the electrical conductivity via decreasing laser energy or increasing scan speed.  相似文献   

17.
Thin films of a tailor-made photodecomposible aryltriazene polymer were applied in a modified laser-induced forward transfer (LIFT) process as sacrificial release layers. The photopolymer film acts as an intermediate energy-absorbing dynamic release layer (DRL) that decomposes efficiently into small volatile fragments upon UV laser irradiation. A fast-expanding pressure jet is generated which is used to propel an overlying transfer material from the source target onto a receiver. This DRL-assisted laser direct-write process allows the precise deposition of intact material pixels with micrometer resolution and by single laser pulses. Triazene-based photopolymer DRL donor systems were studied to derive optimum conditions for film thickness and laser fluences necessary for a defined transfer process at the emission wavelength of a XeCl excimer laser (308 nm). Photoablation, surface detachment, delamination and transfer behavior of aryltriazene polymer films with a thickness from 25 nm to ∼400 nm were investigated in order to improve the process control parameters for the fabrication of functional thin-film devices of microdeposited heat- and UV-sensitive materials.  相似文献   

18.
The simple and efficient fiber delivery of 5-ns pulses from a XeCl excimer laser operating at a wavelength of 308 nm is demonstrated. The coupling scheme uses all of the output energy of the XeCl excimer laser and benefits from a simple and easy-to-adjust fiber coupling. Experiments on the 308-nm fiber delivery for more than 2.5 million laser pulses of 8-ns pulse width (FWHM) and up to 8-mJ stabilized pulse energy are performed. The long-time pulsed UV laser transmission is found to be different for individual samples of optical fibers that perform very similarly in low-intensity UV light applications. For applications with strict demands on the long-time stability, a critical evaluation of the fiber performance with the 308-nm laser under operating conditions is necessary. Measurements between 1 and 200 Hz show a negligible dependence of the fiber delivery performance on the repetition rate of the transmitted laser pulses. PACS 42.55.Lt; 42.81.Cn; 07.69.Vg  相似文献   

19.
研究驻波型激光脉冲作用下,囚禁于Paul阱中的单离子在Lamb-Dicke区域的久期运动.通过试探解方法,得到系统的量子力学精确解.基于精确解描述的概率波包串,发现:1)波包串中心以及波包串的高度和宽度受激光脉冲强度的控制,通过调节激光强度可以控制波包串的形变和传播;2)在激光脉冲作用瞬间,离子的能量期待值发生跳变,而在激光关闭时段,有窄的能带形成;3)存在一个激光脉冲强度的临界值,在临界点附近,系统的稳定性发生变化. 关键词: 囚禁离子 激光脉冲 Lamb-Dicke近似 精确解  相似文献   

20.
研究驻波型激光脉冲作用下,囚禁于Paul阱中的单离子在Lamb-Dicke区域的久期运动.通过试探解方法,得到系统的量子力学精确解.基于精确解描述的概率波包串,发现:1)波包串中心以及波包串的高度和宽度受激光脉冲强度的控制,通过调节激光强度可以控制波包串的形变和传播;2)在激光脉冲作用瞬间,离子的能量期待值发生跳变,而在激光关闭时段,有窄的能带形成;3)存在一个激光脉冲强度的临界值,在临界点附近,系统的稳定性发生变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号