首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

2.
Nylon 6 (PA 6)/ethylene bis-stearamide (EBS)/SiO2- carboxylic acid-functionalized silica nanoparticles (COOH) composites were prepared by in-situ polymerization of caprolactam. SiO2-COOH was used to enhance the compatibility between SiO2 and PA 6 matrix. For comparison, pure PA 6 and PA 6/EBS composites were also prepared via the same method. The PA 6/EBS/SiO2-COOH composites with low content of EBS and SiO2-COOH had greater melt-flow index (MFI) (the value of MFI increased by 50%–80%) than the pure PA 6. The results of mechanical properties showed almost no decrease in the tensile strength of PA 6/EBS/SiO2-COOH composites, with the bending strength decreasing by 17%–21%. However, the Izod impact strength of the PA 6/EBS/SiO2-COOH composites was greatly improved compared with pure PA 6, which indicated that the toughness of PA 6/EBS/SiO2-COOH had been greatly improved. The morphology of Izod impacted fractured surfaces of PA 6/EBS/SiO2-COOH was observed by scanning electron microscopy. The results revealed that the PA 6/EBS/SiO2-COOH composites presented a typical ductile fracture behavior with large amounts of long and large strip-like cracks. When the content of SiO2-COOH was 0.2 wt%, the SiO2-COOH particles were uniformly dispersed over the entire body of the PA 6 matrix. The results from differential scanning calorimetry indicated that the melting point (Tm), degree of crystallinity (Xc), and crystallization temperatures (Tc) of PA 6/EBS/SiO2-COOH composites were lower than the pure PA 6.  相似文献   

3.
The polyamide-6 pellets were mixed with nano-SiO2 particles surface-capped by 3-aminopropyltriethoxysilane (APS) via a melt blending route. PA-6 composites doped with surface-capped nano-SiO2 (designated as PAMNS, where AMNS refers to APS surface-capped nano-SiO2). AMNS and the silica samples (designated as EAMNS) extracted by acid etching from various PAMNS samples containing different concentration of amino functional groups on surface-capped nano-silica surfaces were characterized by means of Fourier transformation infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). This aims at revealing the interfacial interaction between AMNS and PA-6 matrix and its effect on the mechanical properties of the filled PA-6 composites. The chemical features and microstructures of the PAMNS composites were analyzed by means of FTIR and transmission electron microscopy (TEM), respectively, while their mechanical properties were evaluated using standardized test rigs. Results demonstrate that the surface-modified nano-SiO2 particles were uniformly dispersed in PA-6 matrix. The residue silica extracted from various PAMNS samples showed characteristic FTIR absorbance peak of PA-6 and had larger weight losses than AMNS, implying that the polymeric matrix was chemically bonded with the nanofiller particles. The interfacial interactions are closely related to the concentration of functional groups in AMNS, and there might exist a critical concentration at which the strongest interfacial interactions could be reached. Beyond the critical concentration of the functional groups in AMNS, the mechanical properties of the filled PA-6 composites tended to decrease to some extent.  相似文献   

4.
Ternary composites composed of polyamide 6 (PA6), a mixture of maleated (EPDM-g-MA) with unmaleated ethylene propylene diene terpolymer (EPDM) rubber at weight ratio 80/20 (defined as EPDM-M), and nano-calcium carbonate (nano-CaCO3) were prepared by a two-step compounding route. Sandbag microstructure, in which nano-CaCO3 agglomerates were embedded EPDM-M, were observed by scanning electron microscopy (SEM). Deformation of the composites was studied by video-aided tensile tests during uniaxial tension. The microstructural morphology and interfacial interaction were investigated through SEM and dynamic mechanical analysis (DMA). Compared to PA6/EPDM-M/nano-CaCO3 ternary composites without sandbag microstructure (E2), the microstructural morphology of PA6/EPDM-M/nano-CaCO3 ternary composites with sandbag microstructure (E3) showed that numerous microfibrils and cavitations were formed by simultaneously stretching and debonding of nano-CaCO3 agglomerates and EPDM-M in the sandbag microstructure, which resulted in a higher volume strain and larger quantity of energy dissipation. Additionally, better interfacial interaction between the sandbag microstructure and PA6 matrix in E3 caused a lower α-relaxation temperature and easier external energy transmission than E2 without sandbag microstructure. Consequently, the presence of the sandbag particles in PA6/EPDM-M/nano-CaCO3 ternary composites changed the tensile yield deformation of PA6 from a more deviatoric plasticity to a more dilatational plasticity.  相似文献   

5.
《Composite Interfaces》2013,20(8):685-702
Styrene-butadiene-glycidyl methacrylate terpolymer (GMA-SBR) was synthesized by emulsion polymerization for the fuel efficient tire tread composite. The chemical structure of the GMA-SBR was analyzed using infrared spectroscopy, 1H NMR, gel permeation chromatography, and differential scanning calorimetry. The GMA-SBR/silica composite is the first instance introduced covalent bonds between silica filler and rubber molecules by in-chain modification of styrene-butadiene molecules. After compounding, the curing characteristics, the mechanical and dynamic mechanical properties of the composites were analyzed. The GMA-SBR/silica composite exhibited higher wear resistance of 32.9% and lower rolling resistance of 25.7% than the styrene-butadiene rubber 1721/silica composite. These results are due to the improvement of silica dispersion in the composite as the covalent bonding increased the filler–rubber interaction and the countervailing effects of less filler flocculation. The proposed approach assists in finding a solution to improve the performances of tires for fuel efficiency and the reduction of greenhouse gases from the vehicles.  相似文献   

6.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

7.
Studies were performed on surface modification of antibacterial TiO2/Ag+ nanoparticles by grafting γ-aminopropyltriethoxysilane (APS). The interfacial structure of the modified particles was characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The thickness of the surface layer was determined by using Auger electron spectroscopy (AES). The results show that APS is chemically bonded to the surface of antibacterial TiO2/Ag+ nanoparticles. Furthermore, the modified particles were mixed in PVC to prepare composites whose antibacterial property was investigated. The results suggest that surface modification has no negative effect on antibacterial activity of TiO2/Ag+ nanoparticles and PVC-TiO2/Ag+ composites exhibits good antibacterial property.  相似文献   

8.
Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl3B3N3H3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.  相似文献   

9.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

10.
Information concerning the interface structure in filler/polymer composites is of key importance for the rationalization of reaction mechanisms in mechano‐chemical (extrusion, blending, etc.), thermal or radiation induced free radical processes and for elucidating the factors underlying the reinforcing mechanism. The analysis of the chain dynamics is a suitable tool for undertaking such investigations because any reactivity parameter (rate constants, collisional frequencies, activation energies) and bonding interactions are strictly related to the mobility of the interacting centres. EPR spectroscopy coupled with specific spin labelling at the filler/polymer interface is a tool for making such novel perspective available. In this work, a spin labelling study of the molecular motion at the filler–rubber interface in a silica–SBR blend is reported. Spin labels of different length, spanning a 9–11 Å depth and linked to the surface of silica particles, were prepared and used for determining the rotational diffusion tensors, the T50 and order parameter in silica/SBR interfaces. The measurements carried out as a function of the temperature in comparison with unbound spin probes dispersed in the rubber matrix have afforded information consistent with the structure of the interfaces predicted by molecular–level theoretical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Using the characteristics of silica sol dispersing well in water and easy formation of silica gel when the silica sol is heated, by mixing a system of concentrated natural rubber latex and silica sol, the silica sol can in-situ generate SiO2 particles when heated. After coagulation of the mixed system, natural rubber/nanosilica composites C(NR/nSiO2) were obtained. The composites C(NR/nSiO2) and their vulcanizates were studied using a rubber processing analyzer (RPA), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The influence of silica contents on the C(NR/nSiO2) vulcanizates mechanical properties, cross-linking degree, Payne effect, dissipation factor (tanδ), and the particle size and dispersion of SiO2 in NR were investigated. The results obtained were compared with the NR/SiO2 composites based on traditional dry mixing of bale natural rubber and precipitated silica (white carbon black). The results showed that when using a sulfur curing system with a silica coupling agent (Si69) in C(NR/nSiO2), the vulcanizate had better mechanical properties, higher wet resistance, and lower rolling resistance than those without Si69. In the composites C(NR/nSiO2) and their vulcanizates, the SiO2 particles’ average grain diameter was 60 nm, and the good-dispersion of the in-situ generated SiO2 in the rubber matrix were a significant contribution to the satisfactory properties of C(NR/nSiO2) composites and their vulcanizates.  相似文献   

12.
ABSTRACT

Obtaining both high hardness and toughness is a challenge in B4C-nano-adhesive composites. Solving the inhomogeneous distribution of nano-adhesives in B4C and forming the chemical bonding at grain boundary is an effective method. Here, we reported that the uniform distribution of titanium diboride (TiB2)-reinforced B4C composites synthesized by high-pressure and high temperature (HPHT). It is found that HPHT sintering can effectively inhibit the grain growth and increase the relative density. Moreover, HPHT sintering can cross high reaction energy barrier and effectively promote the formation of chemical bonding at grain boundary between B4C and TiB2. The optimal hardness and toughness value reach 30.0?±?0.9?GPa and 7.87?MPa·m1/2, respectively. The improvement of hardness and toughness in the final products are ascribed to the strengthening of nanoTiB2 connection of B4C boundary and intergranular fracture mechanism. This work suggests a new way to achieve the uniform distribution of nanoTiB2 in B4C and form the chemical bonding at grain boundary, which is of great significance to the further development of TiB2-reinforced B4C composites with excellent mechanical properties.  相似文献   

13.
Pimelic acid (PA) was used as a new surface modifier for CaCO3. The effects of PA treatment on the crystallization, morphology, and mechanical properties of PP/CaCO3 composites were investigated. Fourier transform infrared (FTIR) spectroscopy analysis revealed that PA bonded to CaCO3 and formed a calcium pimelate surface layer after reacting with CaCO3. The results of wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarized light microscopy (PLM) proved that the PA treated CaCO3 induced a large amount of β -iPP and decreased the spherulitic size of PP. The results of scanning electron microscopy (SEM) showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between PP and CaCO3. The toughness of the composites was improved by the more ductile β -form spherulites. When 1% of PA treated CaCO3 was added, the notched impact strength reached its maximum, a value of 19.79 kJ/m2, which was 3.64 times greater than that of the pure PP.  相似文献   

14.
PbO and PZT thin films were deposited on the p-type (1 0 0) Si substrate by the rf magnetron sputtering method with PbO and Pb1.1Zr0.53Ti0.47O3 targets for the application of the metal-ferroelectric-insulator-semiconductor (MFIS) structure. The MFIS structures with the PbO buffer layer show the good electric properties including a high memory window and a low leakage current density. The maximum value of the memory window is 2.0 V under the applied voltage of 9 V for the Pt/PZT (200 nm, 400 °C)/PbO (80 nm)/Si structures with the PbO buffer layer deposited at the substrate temperature of 300 °C. From the X-ray photoelectron spectroscopy (XPS) results, we could confirm that the substrate temperature of PbO affects the chemical states of the interface between the PbO buffer layer and Si substrate, which results in the inter-diffusion of Pb and the formation of the intermediate phases (PbSiO3). And the existence of the undesired SiO2 layer, which is the low dielectric layer, was confirmed at the surface region of the Si substrate by the XPS depth profile analysis.  相似文献   

15.
Blends of polyamide 6 (PA6)/polycarbonate (PC)/epoxy resin (EP) were melt blended with three different mixing sequences. Their mechanical properties, crystallization, and rheological behaviors, as well as the morphology, were investigated via mechanical testing, differential scanning calorimetry (DSC), dynamic rheometry, and scanning electron microscopy (SEM). It was noted that the mixing sequences affected the distribution of EP in the PA6 matrix, as well as the reactivity of EP with PA6 and PC. Mechanical testing showed that the blends prepared by the first (S1, blending PA6, PC, and EP simultaneously) and second mixing sequences (S2, blending PC with a premixture of PA6/EP) had higher notched Izod impact strengths due to the formation of PA6-EP-PC block copolymer (named as the AEC structure) during compounding, as evidenced by the results of dynamic rheology and SEM. Whereas for the third sequence (S3, blending PA6 with a premixture of PC/EP), EP could barely react with PA6 and PC, leading to little formation of AEC structure, which resulted in a poor notched Izod impact strength of the blends. The incorporation of EP actually acted as a plasticizer to improve the elongation at break of the S3 blends. In addition, the DSC results and SEM observations showed that there were distinct differences in the crystallization and morphology of the samples prepared by the different mixing sequences.  相似文献   

16.
Binary Al2O3/SiO2-coated rutile TiO2 composites were prepared by a liquid-phase deposition method starting from Na2SiO3·9H2O and NaAlO2. The chemical structure and morphology of binary Al2O3/SiO2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al2O3/SiO2 coating layers both in amorphous phase were formed at TiO2 surfaces. The silica coating layers were anchored at TiO2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO2-coated TiO2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al2O3/SiO2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al2O3/SiO2-coated TiO2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 composites were higher than those of the naked rutile TiO2 and the SiO2-coated TiO2 samples. The relative light scattering index was found to depend on the composition of coating layers.  相似文献   

17.
Using a small amount of nanoclay (montmorillonite (MMT)) can significantly enhance the thermal and mechanical properties of polymer-based composites. Therefore, an in depth understanding of the bonding characteristic between the nanoclay and its surrounding matrix is essential. In this study, Fourier Transform Infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were conducted to analyze the chemical composition between epoxy matrix and nanocomposite. These experiments revealed that a chemical bonding at an interface between the matrix and nanoclay of the composites did exist. Thus, such bonding can enhance the mechanical and thermal properties of resultant polymer composites as reported in many literatures.  相似文献   

18.
The modulation mechanism of iron (Fe) and manganese (Mn) in transition-metal elements on the interface bonding and mechanical properties of bronze (Cu3Sn)-based/diamond composites is investigated through first-principles calculations. Transition-elements-doping scenarios are investigated employing six-layer slab models. It is revealed that the doping of Fe or Mn can make the Cu3Sn/diamond interface more stable, which effectively improves the wettability of the Cu3Sn/diamond interface based on the calculation results and analysis of interface energy, differential charge density model, and density of states. However, co-doping with both Fe and Mn weakens the wettability of the Cu3Sn/diamond interface. Finally, wettability tests and microstructure characterizations demonstrate that the doping of Fe and Mn represents an effective approach to controlling the interface bonding performance of bronze/diamond composites.  相似文献   

19.
A sandbag microstructure was constructed in Polyamide 6(PA6)/ethylene-propylene-diene terpolymer (EPDM)/nanometer calcium carbonate (nano-CaCO3) ternary composites by the addition of maleinated EPDM (EPDM-g-MA) to reduce the interfacial tension between EPDM and PA6 and EPDM and nano-CaCO3. Scanning electron microscopy (SEM) observation and differential scanning calorimetry (DSC) analysis revealed that the microstructure of the ternary composites evolved from the initial separated EPDM and nano-CaCO3 dispersion structure to the sandbag structure and finally to the separated dispersion structure again with the increase of EPDM-g-MA content in the elastomer phase. The mechanical results showed the composites with the sandbag microstructure exhibited excellent toughness and stiffness.  相似文献   

20.
The preparation and properties of wood–plastic composites (WPCs) based on acrylonitrile–butadiene–styrene (ABS) and bamboo fibers (BFs) are described. The BFs were first modified by alkali treatment in order to improve their adhesion to an ABS matrix. The BF modifications were monitored by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Styrene–maleic anhydride (SMA) copolymer, as a compatibilizer, was added to both the untreated and alkali-treated composites. The changes in the structure and the properties resulting from these treatments were observed by the SEM and mechanical tests. The experimental results indicated that both the alkali treatment of the BF and the inclusion of the SMA copolymer improved the interactions between the BF and ABS matrix, and promoted better mechanical properties of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号