首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi.  相似文献   

2.
We report on the structural, magnetic and electronic transport properties of thin MnxGe1−x films grown at 350 °C. Isolated Mn5Ge3 nanoclusters, about 100 nm in size, were formed at the top surface of the film, dominating the magnetic properties of the whole film. Electronic transport properties show Mn doping effect indicating the presence of substitutional Mn ions dispersed in the Ge host, contributing to the formation of a MnxGe1−x diluted phase. Electrical behaviour indicates a saturation effect with the raise of the nominal Mn concentration in the film, above x ≅ 0.03.  相似文献   

3.
YBCO films without and with dilute cobalt and zinc doping were prepared on (0 0 l) LaAlO3 substrate by non-fluorine metal organic deposition method. Effects of dilute cobalt and zinc doping on biaxial texture, microstructure and flux-pinning properties of YBCO films were investigated. The surface density and smoothness of the doped YBCO films have been distinctly improved compared with that of the pure film. Dilute cobalt- and zinc-doped YBCO films exhibit significantly enhanced Jc values in the magnetic field. The best result is achieved in the cobalt-doped YBCO film. At 77 K, Jc values of cobalt-doped film are 1.7 and 5.4 times higher than that of pure film in 0.5 T and 1.5 T, respectively. These results strongly suggest that dilute cobalt and zinc doping is a promising way to increase the current carrying capability of YBCO films.  相似文献   

4.
The samarium doping zinc oxide (Zn1-xSmxO) with (x=0.0, 0.04, 0.05 and 0.17) polycrystalline thin films have been deposited on n-Si(1 0 0) substrate using thermal evaporation technique. Ceramic targets for deposition were prepared by the standard solid-state reaction method and sintered in nitrogen atmospheres. X-ray diffraction and scanning electron microscopy analyses show that the bulk and films features reveal wurtzite crystal structure with a preferential (1 0 1) crystallographic orientation and grows as hexagonal shape grains. According to the results of the Hall effect measurements, all the films show p-type conductivity, possibly a result of nitrogen incorporation into the Sm-doped ZnO samples. Magnetic measurements show that ferromagnetic behavior depends on the Sm3+ concentration. For a film with lower Sm2O3 contents (x=0.04), a phenomenon of paramagnetism has been observed. While, with further increase of Sm3+ contents (x=0.05) the ferromagnetic behavior has been observed at room temperature. However, at higher doping content of Sm3+, the ferromagnetic behavior was suppressed. The decrease of ferromagnetism with increasing doping concentration demonstrates that ferromagnetism observed at room temperature is an intrinsic property of Zn1-xSmxO films.  相似文献   

5.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

6.
Yttrium doped Zinc Oxide (YxZn1−xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1−xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.  相似文献   

7.
We have fabricated high-quality FeSe1−x superconducting films with a bulk Tc of 11–12 K on different substrates, Al2O3(0 0 0 1), SrTiO3(1 0 0), MgO(1 0 0), and LaAlO3(1 0 0), by using a pulsed laser deposition technique. All the films were grown at a high substrate temperature of 610 °C, and were preferentially oriented along the (1 0 1) direction, the latter being to be a key to fabricating of FeSe1−x superconducting thin films with high Tc. According to the energy dispersive spectroscopy data, the Fe:Se composition ratio was 1:0.90 ± 0.02. The FeSe1−x film grown on a SrTiO3 substrate showed the best quality with a high upper critical magnetic field [Hc2(0)] of 56 T.  相似文献   

8.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

9.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

10.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves.  相似文献   

11.
We investigated the effects of indium doping on the superconducting properties of YBCO sintered samples and thin films. In2O3-doped YBCO and YBa2Cu3−xInxOy sintered samples showed a gradual decrease in the critical temperature (Tc) with increasing indium content; however, a Tc value above 80 K was maintained even up to 30 vol.% addition and x = 0.4, respectively. Ba3Cu3In4O12 was detected by X-ray diffractometry and energy-dispersive X-ray spectroscopy as a reaction product for both sintered samples. The normalized Jc under a magnetic field of 0.1 T showed a maximum at = 0.3. Indium-doped YBCO films prepared by pulsed laser deposition showed a similar dependence of Tc on indium content as the sintered samples.  相似文献   

12.
Thin films of Zn1−xMnxO (x=0.01) diluted magnetic semiconductor were prepared on Si (1 0 0) substrates by the sol-gel method. The influence of annealing temperature on the structural, optical and magnetic properties was studied by X-ray diffraction (XRD), atom force microscopy (AFM), photoluminescence (PL) and SQUID magnetometer (MPMS, Quantum Design). The XRD spectrum shows that all the films are single crystalline with (0 0 2) preferential orientation along c-axis, indicating there are not any secondary phases. The atomic force microscopy images show the surfaces morphologies change greatly with an increase in annealing temperature. PL spectra reveal that the films marginally shift the near band-edge (NBE) position due to stress. The magnetic measurements of the films using SQUID clearly indicate the room temperature ferromagnetic behavior, and the Curie temperature of the samples is above room temperature. X-ray photoelectron spectroscopy (XPS) patterns suggest that Mn2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO host. It is also found that the post-annealing treatment can affect the ferromagnetic behavior of the films effectively.  相似文献   

13.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

14.
Zn1−xCoxO thin films with c-axis preferred orientation were deposited on sapphire (0 0 0 1) by pulsed laser deposition (PLD) technique at different substrate temperatures in an oxygen-deficient ambient. The effect of substrate temperature on the microstructure, morphology and the optical properties of the Zn1−xCoxO thin films was studied by means of X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible-NIR spectrophotometer, fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted as substrate temperature rose. The structure of the samples was not distorted by the Co incorporating into ZnO lattice. The surface roughness of all samples decreased as substrate temperature increased. The Co concentration in the film was higher than in the target. Emission peak near band edge emission of ZnO from the PL spectra of the all samples was quenched because the dopant complexes acted as non-radiative centers. While three emission bands located at 409 nm (3.03 eV), 496 nm (2.5 eV) and 513 nm (2.4 eV) were, respectively, observed from the PL spectra of the four samples. The three emission bands were in relation to Zn interstitials, Zn vacancies and the complex of VO and Zni (VOZni). The quantity of the Zn interstitials maintained invariable basically, while the quantity of the VOZni slightly decreased as substrate temperature increased.  相似文献   

15.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

16.
Ba0.7−xSr0.3MnxTiO3 (x = 0, 0.025, 0.05) thin films have been prepared on copper foils using sol-gel method. The films were processed in an atmosphere with low oxygen pressure so that the substrate oxidation is avoided and the formation of the perovskite phase is allowed. XRD and SEM results showed that Mn doping enhanced the crystallization of the perovskite phase in the films. The Mn substitution prevents the reduction of Ti4+ to Ti3+, which is supported by XPS analysis. The Ba0.7−xSr0.3MnxTiO3 film with x = 0.025 (BSMT25) exhibits preferred dielectric behavior and a lower leakage current density among the three thin films. The dielectric constant and loss of the BSMT25 film are 1213.5 and 0.065 at 1 MHz and around zero field, which are mostly desired for embedded capacitor applications. The mechanism of Mn doping on improving the electrical properties of barium strontium titanate (BST) thin films was investigated.  相似文献   

17.
We have prepared a series of (PLZT)x(BiFeO3)1−x transparent thin films with thickness of 300 nm by a thermal pyrolysis method. Only films with x≦0.10 formed a single phase of perovskite structure. The film where x=0.10 exhibited both ferromagnetic and ferroelectric properties at room temperature with spontaneous magnetization and coercive magnetic fields of 0.0027μB and 5500 G, respectively. The remanent electric polarization and coercive electric field for the film where x=0.10 were 3.0 μC/cm2 and 24 kV/cm, respectively. Additionally, films with 0.02≦x≦0.10 showed both magneto-optical effects and the second harmonic generation of transmitted light.  相似文献   

18.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

19.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

20.
We report on the magnetization, magnetocaloric effect, magnetic ordering temperatures, saturation magnetic moments and anisotropy of sputter-deposited GdxCr1−x alloys with Gd atomic concentrations, x, ranging from 0.13 to 0.52. The complex magnetic nature of the Gd-Cr films was revealed from the M×H isotherms, which do not show saturation even at an applied field of 70 kOe and a temperature of 2 K and do not exhibit a linear behavior at higher temperatures. For some of the samples, the isotherms were used to determine the isothermal entropy variation as a function of temperature, for a change of 50 kOe in the applied magnetic field. The saturation magnetic moment varies with x and follows the dilution law, implying that the Cr atoms do not contribute to the total moment of the Gd-Cr alloys. Both static magnetization and dynamic susceptibility measurements reveal the existence of a magnetic glassy behavior in the alloys, which occurs below a freezing temperature. The existence of anisotropy at low temperatures for all samples was revealed by their M×H hysteresis loops from which the in-plane coercive fields, Hc, were determined. A monotonical increase in Hc with increasing Gd concentration was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号