首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to investigate how the surface characteristics of indium phosphide (InP) can be modified through the use of atomic hydrogen (H*) cleaning and silicon interfacial control layers (Si ICL), prior to the deposition of MgO dielectric layers. X-ray photoelectron spectroscopy (XPS) analysis shows that the InP native oxide can be successfully removed using atomic hydrogen cleaning at a substrate temperature of 300 °C. However, atomic force microscopy (AFM) images display evidence for the growth of metallic In island features after H* cleaning, and subsequent deposition of MgO thin films on the H* cleaned surface resulted in high levels of interfacial indium oxide growth. It has also been shown that the deposition of thin (∼1 nm) Si layers on InP native oxide surfaces results in the transfer of oxygen from the InP substrate to the Si ICL and the formation of Si-InP bonds. XPS analysis indicates that MgO deposition and subsequent 500 °C annealing results in further oxidation of the Si layer. However, no evidence for the re-growth of interfacial In or P oxide species was observed, in contrast to observations on the H* cleaned surface.  相似文献   

2.
A simple method of determining oxide uniformity is derived which requires no knowledge of film thickness, escape depth, or film composition. The method involves only the measurement of oxide and substrate intensities and is illustrated by analysis of XPS spectral data for thin SiO2 films grown both thermally and by low-temperature chemical vapor deposition on monocrystalline Si. A region 20–30 Å thick is found near the SiO2/Si interface on thermally oxidized samples which has an inelastic mean free path 35% less than that found in the bulk oxide. This is interpreted as being due to lattice mismatch resulting in a strained region which is structurally, but not stoichiometrically, distinct from the bulk oxide.  相似文献   

3.
In this paper we present the results of the XPS atomic depth profile analysis, using ion beam sputtering, of L-CVD SnO2 thin films grown on an atomically clean SiO2 substrate after annealing at 400 °C in dry atmospheric air. From the evolution of the Sn 3d5/2, O 1s, Si 2p and C 1s core level peaks our experiments allowed the determination of the in depth atomic concentration of the main components of the SnO2/SiO2 interface. Thin (few nm) nearly stoichiometric SnO2 films are present at the topmost layer of the thin films, and progressive intermixing with SnO and silicon oxide is observed at deeper layer. The interface between the Sn and the Si oxide layers (i.e. the effective Sn oxide thickness) is measured at 13 nm.  相似文献   

4.
Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of the as-deposited thin films are systematically investigated by x-ray diffraction, x-ray photoelectron spectroscopy (XPS) as well as scanning electron microscopy. The results show that the crystal structure, morphology and deposition rate of the films all are dependant on substrate bias. With the increase of bias voltage from 0 V to -120 V, the zirconium oxide thin film grown on silicon wafer first exhibits monoclinic lattice and tetragonal lattice, further evolves monoclinic phase with the preferred orientation along the (-111) and (-222) directions at -60 V and finally along nearly one observed preferred (002) direction under -120 V. In addition, the variations of morphology with bias voltage are correlated to changes of the film structure. The results of XPS demonstrate that Zr elements are almost oxidized completely in the films achieved under -120 V bias.  相似文献   

5.
At first, X-ray photoelectron spectroscopy (XPS) analyses of reference and carbon dioxide plasma treated polyethylene terephthalate (PET) were carried out. Significant chemical modifications were outlined in the treated PET surface in comparison with the reference one. The formation of new oxygenated groups was evidenced. These modifications heighten the level of interactions between the polymer substrate and the deposited coating.In a second stage, zinc oxide thin films were elaborated by r.f. magnetron sputtering from a ceramic target and with a reactive gas (mixture of argon-1% oxygen) under optimised conditions on CO2 plasma treated PET. The interfacial chemistry between the plasma treated PET and the zinc oxide was also studied by XPS. The line shape changes in the high-resolution core level spectra of carbon C1s, oxygen O1s, and zinc (Zn2p3/2, Zn3p), with the progressive deposition of zinc oxide coatings being recorded. The obtained spectra were fitted to mixed Gaussian-Lorentzian components using XPS CASA software.An interaction scheme between the zinc oxide thin layer and its polymer substrate, in the first stage of deposition, was proposed and checked by corroborating the findings of the different XPS spectra and their decompositions. It suggests the formation of ZnOC complexes at the interface, which are promoted by an electron transfer from zinc to oxygen in oxygenated species, mainly alcohol groups, generated by the CO2 plasma treatment of PET.  相似文献   

6.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

7.
To investigate the initial growth of Fe films on Si(0 0 1) and the Fe/Si interface, Fe films at various thicknesses have been systematically studied by soft X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS). The Fe L edge XAS spectrum shows a strong thickness dependence with broader line-width for thinner films. Detailed analysis of the Fe absorption signal as a function of the thickness shows that the broad linewidth of Fe L edge XAS spectra is mostly contributed by the first Fe layer at the Fe/Si interface. In contrast to XAS, Fe 2p photoemission spectra for these films are identical. However, valence band photoemission also shows a strong thickness dependence. Comparing the valence band photoemission spectra of the thin Fe/Si(0 0 1) films with that of pure Si and the thickest Fe film, the difference spectra at all thicknesses show almost identical shape indicating the same origin: the Fe/Si interface. Thus, it is mainly the first Fe layer at Fe/Si layer that is reactive with the Si substrate changing its electronic structure.  相似文献   

8.
ZnO seed layers and well-aligned ZnO single-crystalline micro/nanorods were synthesized on bare Si in one step without the assistance of catalysts by chemical bath deposition. Scanning electron microscopy (SEM) images and X-ray diffraction patterns show that the alignment of ZnO rods on Si(100) could be adjusted by varying the substrates’ angles of incline, the reaction temperature, and the precursor concentration. Transmission electron microscopy cross-sectional images demonstrate that a polycrystalline seed layer with (0002) preferred orientation was formed between the well-aligned rods and Si substrate placed vertically while a randomly oriented layer was formed between the randomly aligned rods and Si substrate placed horizontally. The formation of seed layers and alignment of as-synthesized ZnO rods were attributed to the assistance of boundary layers in a chemical bath deposition system.  相似文献   

9.
This study is concerned with the chemical characterization of metallic gallium droplets, obtained on silicon (1 0 0) substrates with a single growth step, by the LP-MOCVD technique with TMGa like precursor. These structures are characterized by SIMS, XPS and TEM. The analyses results lead to a structure proposition for the droplets. The core is composed of metastable metallic gallium with a non-negligible carbon quantity probably coming from incomplete precursor decomposition. The outer part, composed of gallium oxide maintains the structure stability. Covering of the substrate by a thin gallium layer of gallium compounds is observed.  相似文献   

10.
The formation of the Si/Ti interface during the deposition of silicon on titanium polycrystalline substrates has been studied at room temperature (RT) using X-ray photoelectron spectroscopy (XPS), angle-resolved XPS (ARXPS), ultraviolet photoelectron spectroscopy (UPS) and ion scattering spectroscopy (ISS). The experimental results are consistent with a two-stage mechanism for Si growth: a first stage characterized by the simultaneous formation of a uniform titanium silicide layer, that reaches a limiting thickness of ∼3 monolayer (ML), and pure silicon islands 1 ML thick that grow on top of this layer up to coalescence, followed by a second stage in which pure silicon islands, with an average thickness of 9 ML, grow on top of the uniform titanium silicide layer + pure silicon ML structure formed during the first stage. As a whole, pure silicon species grows according to a Stranski-Krastanov mechanism, where the first ML is formed during the first stage and the islands during the second stage. The comparison of Ti/Si and Si/Ti interfaces shows that the structure and composition of the interface do not depend substantially on the deposition sequence, suggesting that the bulk chemistry of the compound formed at the interface dominates over the surface kinetics and the bulk substrate chemistry in determining the composition and structure of the interface.  相似文献   

11.
Titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films have been deposited on modified Si(1 0 0) substrates selectively by metal-organic chemical vapor deposition (MOCVD) method using new single molecular precursor of [M(OiPr)2(tbaoac)2] (M=Ti, Zr; tbaoac=tertiarybutyl-acetoacetate). For changing the characteristic of the Si(1 0 0) surface, micro-contact printing (μCP) method was adapted to make self-assembled monolayers (SAMs) using an octadecyltrichlorosilane (OTS) organic molecule which has -CH3 terminal group. The single molecular precursors were prepared using metal (Ti, Zr) isopropoxide and tert-butylacetoacetate (tbaoacH) by modifying standard synthetic procedures. Selective depositions of TiO2 and ZrO2 were achieved in a home-built horizontal MOCVD reactor in the temperature range of 300-500 °C and deposition pressure of 1×10−3-3×10−2 Torr. N2 gas (5 sccm) was used as a carrier gas during film depositions. TiO2 and ZrO2 thin films were able to deposit on the hydrophilic area selectively. The difference in surface characteristics (hydrophobic/hydrophilic) between the OTS SAMs area and the SiO2 or Si-OH layer on the Si(1 0 0) substrate led to the site-selectivity of oxide thin film growth.  相似文献   

12.
戴隆贵  禤铭东  丁芃  贾海强  周均铭  陈弘 《物理学报》2013,62(15):156104-156104
本文介绍了一种简单高效的制备硅纳米孔阵结构的方法. 利用激光干涉光刻技术, 结合干法和湿法刻蚀工艺, 直接将光刻胶点阵刻蚀为硅纳米孔阵结构, 省去了图形反转工艺中的金属蒸镀和光刻胶剥离等必要步骤, 在2英寸的硅 (001) 衬底上制备了高度有序的二维纳米孔阵结构. 利用干法刻蚀产生的氟碳有机聚合物作为湿法刻蚀的掩膜, 以及在干法刻蚀时对样品进行轻微的过刻蚀, 使SiO2点阵图形下形成一层很薄的硅台面, 是本方法的两个关键工艺步骤. 扫描电子显微镜图片结果表明制备的孔阵图形大小均匀, 尺寸可控, 孔阵周期为450 nm, 方孔大小为200–280 nm. 关键词: 激光干涉光刻 纳米阵列 刻蚀 氟碳有机聚合物  相似文献   

13.
High-k dielectric LaAlO3 (LAO) films on Si(100) were studied by TOF-SIMS and XPS to look for diffusion processes during deposition and additional thermal treatment and for the formation and composition of possible interfacial layers. The measurements reveal the existence of SiO2 at the LAO/Si interface. Thermal treatment strengthens this effect indicating a segregation of Si. However, thin LAO layers show no interfacial SiO2 but the formation of a La-Al-Si-O compound. In addition, Pt diffusion from the top coating into the LAO layers occurs. Within the LAO layer C is the most abundant contamination (1021 at/cm3). Its relatively high concentration could influence electric characteristics. XPS shows that CO32− is intrinsic to the LAO layer and is due to the adsorption of CO2 of the residual gas in the deposition chamber.  相似文献   

14.
Growth and nucleation behavior of Ir films grown by atomic layer deposition (ALD) on different interfacial layers such as SiO2, surface-treated TaN, and 3-nm-thick TaN were investigated. To grow Ir thin film by ALD, (1,5-cyclooctadiene) (ethylcyclopentadienyl) iridium (Ir(EtCp)(COD)) and oxygen were employed as the metalorganic precursor and reactant, respectively. To obtain optimal deposition conditions, the deposition temperature was varied from 240 to 420 °C and the number of deposition cycles was changed from 150 to 300. The Ir film grown on the 3-nm-thick TaN surface showed the smoothest and most uniform layer for all the deposition cycles, whereas poor nucleation and three-dimensional island-type growth of the Ir layer were observed on Si, SiO2, and surface-treated TaN after fewer number of deposition cycles. The uniformity of the Ir film layer was maintained for all the different substrates up to 300 deposition cycles. Therefore we suggest that the growth behavior of the Ir layer on different interface layer is related to the chemical bonding pattern of the substrate film or interface layer, resulting in better understand the growth mechanism of Ir layer as a copper diffusion barrier. The ALD-grown Ir films show the preferential direction of (1 1 1) for all the reflections, which indicates the absence of IrO2 in metallic Ir.  相似文献   

15.
《Current Applied Physics》2015,15(6):675-678
Penetration effects of various electrode materials, namely Al, Au, and Cu, on the physical and electrical characteristics of amorphous oxide semiconductor thin film transistors (TFTs) were investigated. Amorphous indium gallium zinc oxide (a-IGZO) TFTs were fabricated with conventional staggered bottom gate structures on a p-type Si substrate. X-ray photoemission spectroscopy (XPS) analysis under the electrode deposition area revealed variations in the oxygen bonding states and material compositions of the a-IGZO layer. Field-emission scanning electron microscopy (FE-SEM) with the line scan of energy dispersive spectroscopy (EDS) showed lateral penetration by the electrode metal. To compare the electrical characteristics of the tested TFTs, the initial current–voltage (I–V) transfer characteristics were examined. In addition, the tested TFTs fabricated using various electrode materials were tested under bias stress to verify the correlations between variations in TFT characteristics and both the metal work function and penetration-induced oxygen vacancies in the channel around the contact area.  相似文献   

16.
We report on the growth of horizontal and straight Si nanowires (NWs) on Si substrate using sputter deposition of the Si layer followed by thermal annealing at 1000 °C and above. The growth of horizontal NWs was achieved without the use of any metal catalyst. Uniform cylindrical shaped Si NWs with a diameter in the range of 50–60 nm and a length of up to 8 μm were synthesized. The as-synthesized Si NWs have a Si core covered with a thin amorphous native oxide layer, as revealed by high resolution transmission electron microscopy. The aspect ratio of these Si NWs is in the range of 100–160. Micro-Raman studies on the NWs reveal a tensile strain on the Si NW core due to presence of a thin oxide layer. From the Raman shift, we calculate a strain of 1.0% for the catalyst free Si NW. FTIR analysis indicates the presence of interstitial oxygen atoms in the Si NWs, as expected from oxidation of Si NWs. For comparison, metal catalyst (Au) assisted Si NWs have also been grown on Si(100) substrate by a similar process. These NWs have a similar diameter and a marginally higher aspect ratio. A model for the growth mechanism of horizontal NWs is presented. This represents one of the first examples of direct horizontal growth of straight Si NWs on commonly used Si substrates suitable for nanoelectronic device fabrication.  相似文献   

17.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

18.
Metal-insulator-metal system was prepared using the single-crystalline Cu-9at.% Al(1 1 1) support. Oxidation of the substrate under well-controlled conditions at elevated temperature leads to the formation of well-ordered aluminium oxide layer. The Pd-Au topmost layer was prepared by a step-by-step deposition of both metals afterwards on the oxide layer at room temperature. Low energy electron diffraction (LEED) measurement did not confirm epitaxial growth of the metal overlayer and gave only a rise of diffuse background after each deposition step. The growth of Pd-Au overlayer exhibited Stranski-Krastanov mode influenced by intermetallic interaction between those metals. No binding energy shifts were visible for the core-level photoelectron peaks of the substrate and the oxide using X-ray photoelectron spectroscopy (XPS). In contrast, the binding energy shifts of Pd 3d and Au 4f photoelectron levels in both directions were observed during all depositions. Bimetallic interactions between the metals as well as size effects are further discussed.  相似文献   

19.
《Surface science》1996,349(1):L133-L137
The escape depth of photoelectrons depends on their kinetic energy. We apply this relationship to measure film thicknesses from X-ray photoelectron spectroscopy (XPS) measurements with tunable-energy synchrotron radiation (SR). For this purpose, a “high-energy SR-XPS” instrument has been constructed and used to characterize thermally oxidized thin films on Si(100) single crystals. In order to observe photoelectrons emitted from deeper regions than with conventional XPS, Si 1s photoelectrons with an energy up to 4000 eV were measured with X-ray energies up to 5800 eV. The oxide thickness was estimated from measurements of the relative Si intensities from the oxide and the substrate at various photon energies. Our results suggest that the SR-XPS system is useful for measuring the thickness of thin films.  相似文献   

20.
TiB2 thin film was deposited by laser-arc deposition method on the surface of single crystalline silicon. The morphology, composition, structure and microtribological properties of the film were studied by using XPS, XRD and atomic force/friction force microscope (AFM/FFM). The results show that TiB2 (100) preferred growth on the Si(100)substrate, TiB2(001) preferred growth on the Si(111) substrate. The TiB2 thin film was composed of TiB2 and a small amount of TiO2. The friction coefficient of TiB2 film on substrates Si (100) and Si(111) in microtribological process were 0.087 and 0.073,respectively. TiB2 thin film displayed distinct ability of anti-scratch and wear-resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号