首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports the effects of porosity on the enhancement of the Schottky barrier height (SBH) and reduction of the leakage current of Pt Schottky diode based on n-type GaN. The porous GaN layer in this work was generated by electroless chemical etching under UV illumination. For comparative study, two additional samples, i.e. one as-grown sample and one thermally treated sample, were also prepared. The structural studies showed that the porous GaN sample has a relatively rough surface morphology with slightly broader X-ray diffraction peak of the (0 0 0 2) plane. The current-voltage (I-V) measurements revealed that the electrical characteristics of the Pt Schottky diode were improved significantly by the presence of the porous layer, in which SBH was observed to be enhanced by 27%.  相似文献   

2.
We demonstrate the controlled preparation of Er‐ and Eu‐doped GaP‐oxide porous composites. The fabrication procedure entails the use of porous semiconductor templates and the impregnation of rare earth ions from a rare earth salt solution in alcohol and thermal treatment. The composites exhibit strong green and red emission that comes from finely dispersed ErPO4 and EuPO4 oxide submicron phases in the composite. These materials may prove useful in future generations of optoelectronic and photonic devices. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Indium-doped GaN nanocrystals with 5% and 10% In have been prepared by a low temperature solvothermal method using hexamethyldisilazane as the nitriding reagent. The nanocrystals show Raman bands at lower frequencies compared to GaN. Photoluminescence spectra of the In-doped GaN nanocrystals exhibit an increase in the FWHM with the decrease in the PL band energy, the band energy itself decreasing with increase in the In content.  相似文献   

4.
Using temperature-dependent photoluminescence (PL) measurements, we report a comprehensive study on optical transitions in AlyInxGa1−xyN epilayer with target composition, x=0.01 and y=0.07 and varying epilayer thickness of 40, 65 and 100 nm. In these quaternary alloys, we have observed an anomalous PL temperature dependence such as an S-shape band-edge PL peak shift and a W-shape spectral broadening with an increase in temperature. With an increase in excitation power density, the emission peak from the AlInGaN epilayers shows a blue shift at 100 K and a substantial red shift at room temperature. This is attributed to the localization of excitons at the band-tail states at low temperature. Compared to 40 and 65 nm thick epilayers, the initial blue shift observed with low excitation power from 100 nm thick AlInGaN epilayer at room temperature is caused by the existence of deeper localized states due to confinement effects arising from higher In and Al incorporation. The subsequent red shift of the PL peak can be attributed by free motion of delocalized carriers that leads to bandgap renormalization by screening. Due to competing effects of exciton and free carrier recombination processes, such behavior of optical transitions leads to two different values of exponent ‘k’ in the fitting of PL emission intensity as a function of excitation power.  相似文献   

5.
The validity of two formation mechanisms of ammonium silicofluoride (ASF), which are proposed to take place when a silicon surface is exposed to the vapor of HNO3/HF acid mixture is investigated. Of the two proposed mechanisms regarding the synthesis of ASF on silicon surface, validity of the first predicting the release of hydrofluosilicic acid (H2SiF6) at the intermediate stage is examined by FTIR spectroscopy and the second mechanism suggesting O2 release is investigated using the Winkler technique. IR absorbance bands of SiF62+ are observed on the fresh samples prepared at low (1/100) HNO3/HF volume fractions. No significant amount of oxygen is detected during the synthesis of ASF films on silicon surface by dry etching technique. These two observations together provide firmer support for the validity of the second mechanism.  相似文献   

6.
In this work, an ultrasonically enhanced anodic electrochemical etching is developed to fabricate light-emitting porous silicon material. Porous silicon layer is fabricated in n-type (1 0 0) oriented silicon using HF solution and treated in selenious acid to increase the photoluminescence intensity. It is found that the increase of photoluminescence intensity after selenious acid treatment is higher in the intact zones and lower in the detached zones of ultrasonic excitation. The photoluminescence appears as a non-monotonous function of time exposure of selenious acid treatment. Surface chemical composition analysis by X-ray photoelectron spectroscopy shows formation of Si-Sex and Si-Sex-Oy on the surface of porous silicon treated with the selenious acid.  相似文献   

7.
We present a new method in which both positive and negative pulses are used to etch silicon for fabrication of porous silicon (PS) monolayer. The optical thickness and morphology of PS monolayer fabricated with different negative pulse voltages are investigated by means of reflectance spectra, scanning electron microscopy and photoluminescence spectra. It is found that with this method the PS monolayer is thicker and more uniform. The micropores also appear to be more regular than those made by common positive pulse etching. This phenomenon is attributed to the vertical etching effect of the PS monolayer being strengthened while lateral etching process is restrained. The explanation we propose is that negative pulse can help the hydrogen cations (H^+) in the electrolyte move into the micropores of PS monolayer. These H^+ ions combine with the Si atoms on the wall of new-formed micropores, leading to formation of Si-H bonds. The formation of Silt bonds results in a hole depletion layer near the micropore wall surface, which decreases hole density on the surface, preventing the micropore wall from being eroded laterally by F^- anions. Therefore during the positive pulse period the etching reaction occurs exclusively only at the bottom of the micropores where lots of holes are provided by the anode.  相似文献   

8.
Zinc oxide (ZnO) films have been grown on sapphire by molecular beam epitaxy (MBE), and it is found that the grain size of the ZnO films increased with increasing the growth temperature. Photoluminescence (PL) study shows that the intensity ratio of near-band-edge emission to deep-level-related emission (NBE/DL) of the ZnO is significantly enhanced with increasing the growth temperature, and the dependence of the carrier mobility on the growth temperature shows very similar trend, which implies that there is a community factor that determines the optical and electrical properties of ZnO, and this factor is suggested to be the grain boundary. The results obtained in this paper reveal that by reducing the grain boundaries, ZnO films with high optical and electrical properties may be acquired.  相似文献   

9.
Epitaxial YBCO thin films have been grown on hexagonal GaN/c-sapphire substrates using DC magnetron sputtering and pulsed laser deposition. An MgO buffer layer has been inserted between the substrate and the YBCO film as a diffusion barrier. X-ray diffraction analysis indicates a c-axis oriented growth of the YBCO films. Φ-scan shows surprisingly twelve maxima. Transmission electron microscopy analyses confirm an epitaxial growth of the YBCO blocks with a superposition of three a-b YBCO planes rotated by 120° to each other. Auger electron spectroscopy and X-ray photoelectron spectroscopy reveal no surface contamination with Ga even if a maximum substrate temperature of 700 °C is applied.  相似文献   

10.
Ordered mesoporous aluminum oxide films with a porosity range of 40-48% were synthesized by an evaporation-induced self-assembly (EISA) process using surfactant templating. To investigate the role of the hydrolysis reaction in the formation of a mesoporous structure, the changes of pore structure properties according to a variation of aging time and water molar ratio were monitored. From the tendencies of pore structure properties, the optimized condition for a high porosity and a highly ordered pore structure in ordered mesoporous alumina film was determined. This alumina film maintained the mesoporous structure even though it annealed at high temperatures, up to 1200 °C. Therefore, the ordered mesoporous alumina films synthesized in this study could be applicable as a material used at high temperature.  相似文献   

11.
High quality vertical-aligned ZnO nanorod arrays were synthesized by a simple vapor transport process on Si (111) substrate at a low temperature of 520 °C. Field-emission scanning electron microscopy (FESEM) showed the nanorods have a uniform length of about 1 μm with diameters of 40-120 nm. X-ray diffraction (XRD) analysis confirmed that the nanorods are c-axis orientated. Selected area electron diffraction (SAED) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) measurements were adopted to analyze the optical properties of the nanorods both a strong UV emission and a weak deep-level emission were observed. The optical properties of the samples were also tested after annealing in oxygen atmosphere under different temperatures, deep-level related emission was found disappeared at 600 °C. The dependence of the optical properties on the annealing temperatures was also discussed.  相似文献   

12.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

13.
安希忠 《中国物理快报》2007,24(7):2032-2035
The crystallization, corresponding to the fcc structure (with packing density p≈0.74), of smooth equal hard spheres under batch-wised feeding and three-dimensional interval vibration is numerically obtained by using the discrete element method. The numerical experiment shows that the ordered packing can be realized by proper control of the dynamic parameters such as batch of each feeding ε and vibration amplitude A. The radial distribution function and force network are used to characterize the ordered structure. The defect formed during vibrated packing is characterized as well. The results in our work fill the gap of getting packing density between random close packing and fcc packing in phase diagram which provides an effective way of theoretically investigating the complex process and mechanism of hard sphere crystallization and its dynamics.  相似文献   

14.
ZnSe films were grown by chemical vapour deposition on GaAs substrates. The influence of the source temperature (between 820 and 900° C) and the substrate temperature (between 620 and 790° C) on the film properties were investigated by Hall measurements, X-ray diffraction, and photoluminescence. With respect to blue luminescent devices the ratio of excitonic to deep level transitions was found to be optimum at low growth rates when the source temperatures were kept below 840° C. P-type conduction up to a net carrier concentration of 8×1018 cm–3 could be obtained by substrate temperatures above 700° C. Lattice contraction versus substrate temperature pointed to a reduced incorporation of donors at higher growth temperatures.  相似文献   

15.
This article reports the study of Pd Schottky contact on porous n-GaN for hydrogen gas sensing. Upon exposure to 2% H2 in N2, porous GaN sensor exhibited significant change of current. Morphological studies revealed that Pd contact deposited on porous GaN has ridge-trench-like morphology, a dense porous network was found in between the ridges. The dramatic change of current was attributed to the unique microstructure at Pd/porous GaN interface, which allowed higher accumulation of hydrogen; this resulted in a stronger effect of H-induced dipole layer and led to a significant change in the electrical characteristics of the porous sensor.  相似文献   

16.
安希忠 《中国物理快报》2007,24(8):2327-2330
Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter, surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi//Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number, total per/meter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher, which is in good agreement with those in random loose packing.  相似文献   

17.
Structural and electronic properties of narrow single-walled GaN nanotubes with diameter from 0.30 to 0.55 nm are investigated using the density functional method with generalized-gradient approximation. The calculations of total energies predict that the most likely GaN nanotubes in our calculation are (2,2), (3,2) and (3,3) nanotubes. From a detailed analysis we find that these narrow single-walled GaN nanotubes are all semiconductors, of which the armchair and chiral tubes are indirect-band-gap semiconductors whereas the zigzag ones have a direct gap except for (4,0) tube. The indirect band gap of (4,0) tube can stem from band sequence change induced by curvature effect. Our results show that the π-π hybridization effect and the formation of benign buckling separations play a key role in the band sequence changes of (4,0) tube.  相似文献   

18.
N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N2 adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.  相似文献   

19.
We have employed the photoluminescence (PL), surface photovoltage spectroscopy (SPS) and Hall effect measurements to study the effects of (NH4)2Sx treatment on the optical and electrical properties of n-type GaN (n-GaN) in this study. (NH4)2Sx treatment of n-GaN led to the decrease of the surface recombination velocity and the increase of the band-edge emission intensity, due to the accumulation of majority carriers and the repulsion of minority carriers near the (NH4)2Sx-treated n-GaN surface, the removal of the native oxide existed on the n-GaN, and sulfur passivation.  相似文献   

20.
A novel rare-earth chloride seed was employed as a catalyst for growth of GaN nano- and micro-crystals on c-, a- and r-plane sapphire. The ErCl3 seed on the substrate surface enhanced the growth rate and density of the GaN crystals. Distinctive green photoluminescence was measured, confirming that Er3+ ions were active in the GaN matrix. This technique can be adapted to selectively grow GaN crystals with emission tailored to the particular optical transitions of the rare-earth seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号