首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, high quality Al-doped ZnO (AZO) thin films were prepared by direct current (DC) reactive magnetron sputtering using a Zn target (99.99%) containing Al of 1.5 wt.%. The films obtained were characterized by X-ray photoelectron spectroscopy (XPS) and thermoelectric measurements. The XPS results reveal that Zn and Al exist only in oxidized state, while there are dominant crystal lattice and rare adsorbed oxygen for O in the annealed AZO thin films. The studies of thermoelectric property show a striking thermoelectric effect in the AZO thin films. On the one hand, the thermoelectromotive and magnetothermoelectromotive forces increase linearly with increasing temperature difference (ΔT). On the other hand, the thermoelectric power (TEP) decreases with the electrical resistance of the sample. But the TEP increases with the increase of temperature below 300 K, and it nearly does not change around room temperature. The experimental results also demonstrate that the annealing treatment increases TEP, while the external magnetic field degrades TEP.  相似文献   

2.
The thermoelectric properties of Bi intercalated compounds BixTiS2 have been investigated at the temperatures from 5 to 310 K. The results indicate that Bi intercalation into TiS2 leads to substantial decrease of its electrical resistivity (one order low for x=0.05 and two orders low for x=0.15, 0.25 at 300 K) and lattice thermal conductivity (22, 115 and 158% low at 300 K for x=0.05, 0.15 and 0.25, respectively). Specially, the figure of merit, ZT, of lightly intercalated compound Bi0.05TiS2 has been improved at all temperatures investigated, and specifically reaches 0.03 at 300 K, which is about twice as large as that of TiS2.  相似文献   

3.
The thermoelectric power (TEP) of the quasi-one-dimensional charge-density-wave (CDW) conductors rubidium blue bronze Rb0.3MoO3 and its alloy Rb0.15K0.15MoO3 were measured in the temperature range 80-280 K. The result showed a sign change from a small positive value to a great negative value where the Peierls transition temperatures (Tp) are 183 and 180 K for Rb0.3MoO3 and Rb0.15K0.15MoO3, respectively. Above Tp, the TEP for both samples can be described with the empirical relation S=AT+B; while below Tp, the TEP fits well the relation S=AT+B/T based on the experimental data. The Fermi energies εF for Rb0.3MoO3 and Rb0.15K0.15MoO3 are estimated to be 1.55 and 0.53 eV, respectively.  相似文献   

4.
The efficiency of thermoelectric power generators and the coefficient of performance of thermoelectric refrigerators increase rapidly in the region of small ZT, and then level off to a flat curve in the region of large ZT, where ZT is the figure of merit. Therefore, simply because one-dimensional thermoelectric materials have high ZT predicted theoretically does not imply that efficient thermoelectric devices can be built with such one-dimensional systems. Our numerical analysis, based on the fundamental thermodynamics which is independent of material systems, with emphasis on energy transport has confirmed this conjecture.  相似文献   

5.
Doubly substituted polycrystalline compound bulk samples of BaxAgyCa2.8Co4O9 were prepared via citrate acid sol-gel method followed by spark plasma sintering. The phase composition, orientation, texture and high temperature electrical properties were systematically investigated. The results showed that the orientation and the texture could be modified by altering ratio of Ba to Ag. The resistivity and the Seebeck coefficient of substituted samples were decreased by decreasing Ba/Ag ratio except for that of Ba0.1Ag0.1Ca2.8Co4O9 sample with lowest electrical resistivity (7.2 mΩ cm at 973 K), moderately high Seebeck coefficient (172 μV/K at 973 K) and improved power factor (0.42 mW/mK2 at 973 K).  相似文献   

6.
Chalcogenide bulk alloys of Agx (As0.4Se0.6) 100−x (x=5, 7.5, 10, 12.5, 15 and 17.5) system were prepared by the conventional melt-quench technique. The d.c. electrical conductivity (σ) and thermoelectric power (TEP) measurements were carried out in the temperature range from 83 to 373 K and from 253 to 373 K, respectively. Variations of both σ and TEP with ambient temperature proved the p-type semiconducting behaviour of these materials. The current density-electric field characteristics were found to be linear. The activation energies, calculated from both the electrical conductivity Eσ and thermoelectric power Es, were found to be dependent on composition.  相似文献   

7.
β-FeSi2-TiB2 composites with various amounts of TiB2, from 0 up to 30 vol%, were prepared by hot pressing. The electrical and thermal conductivities, and the Seebeck coefficient were measured as a function of temperature. The results show that the thermal and electrical transport behavior of the composites is different as the volume fraction of TiB2 is below and above about 0.255. A 5 vol% TiB2 added sample has higher figure of merit than one without TiB2 for temperatures above 650 K. The influence of an additional phase, ε-FeSi, formed during the hot pressing, on the thermoelectric properties of the β-FeSi2-TiB2 composites was also discussed.  相似文献   

8.
Transport coefficients of quantum‐well‐like structures may in special circumstances show several interesting features. We have obtained theoretical expressions for transport coefficients including Lorenz factor and Seebeck coefficient in well-like structures taking into account the contributions from various sub-bands. Calculations based on the model have been presented for lead telluride quantum wells of varying well width (a). The results indicate a significant deviation in the transport behaviour as compared to the bulk particularly for a<100 nm. Unlike in the bulk material changes in Lorenz factors are rather less pronounced and at a=10 nm it is virtually a constant at 2.0. The Seebeck coefficient on the other hand shows a sharp rise below 100 nm. This region may be of particular interest in thermoelectric device applications. The results show an unusual behaviour of the Lorenz factor and Seebeck coefficient below a 100 nm well width. Moreover, contributions from quantized sub‐bands occupied up to the Fermi level may under certain conditions lead to a non-monotonic behavior which is also reported in some recent experimental measurements on particular PbTe quantum well structures.  相似文献   

9.
Thermoelectric properties of single crystalline CexSr1−xTiO3 films (0 ≤ x ≤ 0.5) have been studied by using combinatorial pulsed-laser deposition. Temperature gradient method was used for identifying an optimum growth temperature for SrTiO3 homoepitaxial growth, at which both oxygen stoichiometry and persisting layer-by-layer growth mode could be accomplished. Electrical conductivity (σ) and Seebeck coefficient (S) were measured at room temperature for the composition-spread films grown at the optimized temperature and found to be considerably higher than those reported for bulk poly-crystalline compounds. Hall measurement revealed that carrier density linearly increased with increasing x, suggesting that a trivalent Ce ions substituted divalent Sr ions to supply electrons. A maximum power factor (S2σ) was obtained for the x = 0.2 film, being 7 and 14 μW/K2 cm at 300 and 900 K, respectively.  相似文献   

10.
In this paper, Ga-doped ZnO (GZO) films were deposited on glass substrates at different substrate temperatures by RF magnetron sputtering. The effect of substrate temperature on the structural, surface morphological properties, Seebeck and magnetoresistive effects of GZO films was investigated. It is found that the GZO films are polycrystalline and preferentially in the [0 0 2] orientation, and the film deposited at 300 °C has an optimal crystal quality. Seebeck and magnetoresistive effects are apparently observed in GZO films. The thermoelectromotive forces are negative. Decreasing substrate temperature and annealing in N2 flow can decrease carrier concentration. The absolute value of the Seebeck coefficient increases with decreasing carrier concentration. The maximal absolute value of Seebeck coefficient is 101.54 μV/K for the annealed samples deposited at the substrate temperature of 200 °C. The transverse magnetoresistance of GZO films is related to both the magnetic field intensity and the Hall mobility. The magnetoresistance increases almost linearly with magnetic field intensity, and the films deposited at higher substrate temperature have a stronger magnetoresistance under the same magnetic field, due to the larger Hall mobility.  相似文献   

11.
In this work, we show experimental results for growth conditions of thermoelectric Ce0.9CoFe3Sb12 thin films. An rf-magnetron sputtering system has been used to grow the films on single crystal substrates of sapphire (Al2O3), silicon (Si), and magnesium oxide (MgO) at different substrate temperatures between 250 and 450 °C. The films were thermoelectrically characterized with resistivity and thermopower measurements as functions of temperature. The results show linear behavior of resistivity with temperature, and thermopower growth with the temperature increase. Such behavior is typical for metallic materials. The structure and surface morphology of the samples were analyzed by X-ray diffraction pattern and atomic force microscopy (AFM), respectively.  相似文献   

12.
Herein we demonstrate that amorphous oxide semiconductor (AOS) superlattices composed of a‐In–Zn–O (well) and a‐In–Ga–Zn–O (barrier) layers, fabricated on SiO2 glass substrate by pulsed laser deposition at room temperature, exhibited an enhanced Seebeck coefficient |S |. The |S | value increases drastically with decreasing a‐In–Zn–O thickness (dIZO) when dIZO < ∼5 nm, and reached 73 µV K–1 (dIZO = 0.3 nm), which is ∼4 times larger than that of bulk |S |3D (19 µV K–1), while it kept its high electrical conductivity, clearly demonstrating that the quantum size effect can be utilized in AOS superlattices. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We have developed a high-throughput thermoelectric screening tool for the study of combinatorial thin films. This tool consists of a probe to measure resistance and Seebeck coefficient on an automated translation stage. A thin film library of the (Ca1−xySrxLay)3Co4O9 ternary system has been fabricated on a Si (1 0 0) substrate, using combinatorial pulsed laser deposition by the natural-composition-spread method. We have demonstrated successful mapping of the resistance and Seebeck coefficient of this film library. The mapping indicates that the substitution of La for Ca results in an increase of both resistance and Seebeck coefficient, and that of Sr results in a decrease of resistance. The screening tool allows us to measure 1080 data points in 6 h.  相似文献   

14.
The effects of partial substitution of Mn for Co on the thermoelectric properties of Ca3MnxCo4−xO9 (x=0, 0.03, 0.9), prepared by sol-gel process, were investigated at the temperatures from 380 K down to 5 K. The results indicate that the substitution of Mn for Co results in increase in thermopower at temperatures >∼80 K, and substantial (23-31% at 300 K) decrease in lattice thermal conductivity in the whole temperature range investigated. The temperature behavior of ZT suggests that Ca3MnxCo4−xO9 with light Mn substitution would be a promising candidate for high-temperature thermoelectric applications.  相似文献   

15.
We investigated the influence of negative pressure on the electrical conductivity, the Seebeck coefficient, and the power factor of Sb2Te3. We performed first-principles calculations with the linearized-augmented plane-wave method considering negative hydrostatic pressure in the range from zero to −2 GPa and doping for electrons and holes up to 1020 cm−3. Our results predict a significant increase of the Seebeck coefficient and the power factor under negative pressure for certain doping concentrations.  相似文献   

16.
Tailoring thermoelectric materials for specific designs and applications has been gaining momentum during past three decades. Initially confined to conventional (bulk) framework an entirely new scenario emerged with inclusion of low-dimensional structures in the scheme of things. The paper examines the effect of size reduction on phonon and electron properties in two-dimensional (quantum well) structures with an aim to maximize thermoelectric performance. The formulation has been applied to silicon-germanium quantum wells with well width ranging from 50–500 ? aimed at finding best alloy combination for thermoelectric applications.  相似文献   

17.
The thermoelectric power was measured in the temperature range 6-300 K for a few Ce-based compounds known as intermediate valent systems, i.e. Ce2Ni2In, Ce2Rh2In, Ce2Ni2Ga and CeNi5Sn, in order to scan these ternaries for possible low-temperature thermoelectric applications. The experimental data were analyzed in terms of phenomenological models and compared to those reported in the literature for similar materials. The results corroborated unstable character of the Ce valence in the ternaries studied. However, the magnitude of the Seebeck coefficient, though being considerably enhanced, is for all of them much lower than those known for the best performers in the field of strongly correlated thermoelectrics: CePd3 and YbAl3.  相似文献   

18.
We have directly demonstrated that homogeneous photoexcitation of a quantum well in presence of uniform tilted magnetic field gives rise to a set of bypass in-plane electric currents of a different value which may flow even in the opposite directions simultaneously. The effect has been observed in an asymmetric InAs quantum well under the Landau quantization. Theoretical model of the effect are discussed as well as the related problems.  相似文献   

19.
We have prepared polycrystalline Ca3−xEuxCo4O9+δ (x=0, 0.15, 0.3 and 0.45) samples using a sol-gel process followed by SPS sintering and investigated the Eu substitution effects on their high-temperature thermoelectric properties. With the Eu substitution, both the electrical resistivity and thermopower increase monotonously. This could be attributed to the decrease of hole concentrations by substitution of trivalent Eu3+ for divalent Ca2+. The Eu substituted samples (x=0.15, x=0.3) have lower thermal conductivity than Ca3Co4O9+δ due to their lower electronic and lattice thermal conductivity. The dimensionless figure of merit ZT reaches 0.3 at 1000 K for the sample of Ca2.7Eu0.3Co4O9+δ.  相似文献   

20.
A thermoelectric material Smx Co4Sb12 (0( x ≤1.0) is synthesized at high pressure and high temperature leading to an enhanced power factor. The experimental measurements show that the SmxCo4Sb12 compounds exhibits n-type conduction. The absolute value of the Seebeck coefficient decreases with increasing Sm fraction. The resistivity increases with samarium content x from 0.1 to 0.2, but decreases dramatically when x changes from 0.2 to 1.0. The maximum power factor reaches 13.1 μW.cm^-1K-2 at x =1.0, which is larger than the data previously reported for the La-doped CoSb3 prepared at room pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号