首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《力学快报》2023,13(4):100453
Buckling and postbuckling characteristics of laminated graphene-enhanced composite (GEC) truncated conical shells exposed to torsion under temperature conditions using finite element method (FEM) simulation are presented in this study. In the thickness direction, the GEC layers of the conical shell are ordered in a piece-wise arrangement of functionally graded (FG) distribution, with each layer containing a variable volume fraction for graphene reinforcement. To calculate the properties of temperature-dependent material of GEC layers, the extended Halpin-Tsai micromechanical framework is used. The FEM model is verified via comparing the current results obtained with the theoretical estimates for homogeneous, laminated cylindrical, and conical shells, the FEM model is validated. The computational results show that a piece-wise FG graphene volume fraction distribution can improve the torque of critical buckling and torsional postbuckling strength. Also, the geometric parameters have a critical impact on the stability of the conical shell. However, a temperature rise can reduce the crucial torsional buckling torque as well as the GEC laminated truncated conical shell's postbuckling strength.  相似文献   

2.
In this study, the torsional vibration and stability problems of functionally graded (FG) orthotropic cylindrical shells in the elastic medium, using the Galerkin method was investigated. Pasternak model is used to describe the reaction of the elastic medium on the cylindrical shell. Mixed boundary conditions are considered. The material properties and density of the orthotropic cylindrical shell are assumed to vary exponentially in the thickness direction. The basic equations of the FG orthotropic cylindrical shell under the torsional load resting on the Pasternak-type elastic foundation are derived. The expressions for the critical torsional load and dimensionless torsional frequency parameter of the FG orthotropic cylindrical shell resting on elastic foundations are obtained. The effects of variations of shell parameters, the exponential factor characterizing the degree of material gradient, orthotropy, foundation stiffness and shear subgrade modulus of the foundation on the critical torsional load and dimensionless torsional frequency parameter are examined.  相似文献   

3.
The sensitivity of laminated conical shells to imperfection is considered, via the initial post-buckling analysis, on the basis of three different shell theories: Donnell’s, Sanders’, and Timoshenko’s. Unlike isotropic conical shells or laminated cylindrical shells, in the case of laminated conical shells the thickness and the material properties vary with the shell coordinates, which complicates the problem considerably. The main objective of the study is to investigate the influence of the variation of the stiffness coefficients on the buckling behavior and on the imperfection sensitivity of laminated conical shells. It is felt that by finding the various parameters that influence the shell’s imperfection sensitivity, it is possible to improve the behavior of the whole structure.A special Level-1 computer code ISOLCS (Imperfection Sensitivity of Laminated Conical Shells) had been developed. ISOLCS calculates the classical buckling load and the imperfection sensitivity via Koiter’s theory of laminated conical shells with consideration to the variation of the material properties in the shell’s coordinates. The range of validity of the Level-1 predictions by ISOLCS is verified by the Level-3 code STAGS-A.  相似文献   

4.
Parametric instability of a rotating truncated conical shell subjected to periodic axial loads is studied in the paper. Through deriving accurate expressions of inertial force and initial hoop tension, a rotating conical shell model is presented based upon the Love's thin shell theory. Considering the periodic axial loads, equations of motion of the system with periodic stiffness coefficients are obtained utilizing the generalized differential quadrature (GDQ) method. Hill's method is introduced for parametric instability analysis. Primary instability regions for various natural modes are computed. Effects of rotational speed, constant axial load, cone angle and other geometrical parameters on the location and width of various instability regions are examined.  相似文献   

5.
推导出一组适用于h型自适应分析的四边形蜕化壳元。对于大多数壳体结构,壳单元的刚度矩阵可分为薄膜、弯曲和剪切三部分。对薄膜部分本文采用杂交应力元方法进行设计,独立假设薄膜应力场以改善其精度;弯曲部分的刚度矩阵则依然由基于位移的应变来获得;而剪切部分则采用假设自然应变的方法来获得能克服薄壳下剪切自锁的新剪应变并用于计算此部...  相似文献   

6.
The stress-strain state of a nonshallow truncated conical shell made of a composite material and subjected to axial forces at the ends is studied. A variational difference method is used. Calculations are carried out for an orthotropic shell with low shear stiffness __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 66–72, July 2007.  相似文献   

7.
This paper describes a casting technique for fabricating high-quality plastic structural models and presents results on the use of such specimens to parametrically study the effect of base-ring stiffness on the critical buckling pressure of a ring-stiffened conical shell. The fabrication technique involves machining a metal mold to the desired configuration and vacuum drawing the plastic material into the mold. A room-temperature-curing translucent thermoset epoxy was the casting material selected. The casting technique allows many high-quality specimens to be produced and each specimen is capable of being repeatedly tested without failure. The conical shell was modified for successive tests by machining the epoxy base-ring configuration to reduce its stiffness. A shell-of-revolution computer program which uses a nonlinear axisymmetric prebuckling strain field to obtain a bifurcation-buckling solution was used to guide the selection of configurations tested. The shell experimentally exhibited asymmetric collapse behavior and the ultimate load was considerably higher than the analyticalbifurcation prediction. The asymmetric buckling-mode shape, however, initially appeared at a pressure near the analysis-bifurcation solution. Comparison of experimental and analytical prebuckling strains at pressure magnitudes below the initiation of asymmetric collapse showed good agreement.  相似文献   

8.
Li  Chaofeng  Li  Peiyong  Zhong  Bingfu  Wen  Bangchun 《Nonlinear dynamics》2019,95(3):1903-1921

The geometrically nonlinear forced vibration response of non-continuous elastic-supported laminated composite thin cylindrical shells is investigated in this paper. Two kinds of non-continuous elastic supports are simulated by using artificial springs, which are point and arc constraints, respectively. By using a set of Chebyshev polynomials as the admissible displacement function, the nonlinear differential equation of motion of the shell subjected to periodic radial point loading is obtained through the Lagrange equations, in which the geometric nonlinearity is considered by using Donnell’s nonlinear shell theory. Then, these equations are solved by using the numerical method to obtain nonlinear amplitude–frequency response curves. The numerical results illustrate the effects of spring stiffness and constraint range on the nonlinear forced vibration of points-supported and arcs-supported laminated composite cylindrical shells. The results reveal that the geometric nonlinearity of the shell can be changed by adjusting the values of support stiffness and distribution areas of support, and the values of circumferential and radial stiffness have a more significant influence on amplitude–frequency response than the axial and torsional stiffness.

  相似文献   

9.
利用区间B样条小波的尺度函数作为有限元插值函数,从轴对称壳的能量泛函出发,由变分原理导出了单元刚度矩阵和载荷列阵,构造了区间B样条小波薄壳截锥单元.区间B样条小波单元同时具有B样条函数数值逼近精度高和多种用于结构分析的变尺度基函数的特点.数值算例表明:与传统截锥单元相比,本文构造的小波单元具有求解精度高、单元数量和自由度少等优点.  相似文献   

10.
Yang  Shaowu  Hao  Yuxin  Zhang  Wei  Yang  Li  Liu  Lingtao 《应用数学和力学(英文版)》2021,42(7):981-998
In this study, the first-order shear deformation theory(FSDT) is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC). The vibration analyses of the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets(GPLs) of the FG-GPLRC truncated conical shell with three different distribution patterns, the modified Halpin-Tsai model is used to calculate the effective Young's modulus. Hamilton's principle, the FSDT, and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell. Then, the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method. The effects of the weight fraction and distribution pattern of the GPLs, the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed. This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.  相似文献   

11.
The paper studies the effect of the discrete arrangement of ribs and their number on the number of dispersion curves for harmonic waves that have a deflection node on a rib's axis and propagate along a cylindrical shell. It is found out that these curves split and the distance between the split curves depends strongly on the torsional stiffness of the ribs  相似文献   

12.
In this paper,the displacement solution method of the conical shell is presented.Fromthe differential equations in displacement form of conical shell and by introducing adisplacement function,U(s,θ),the differential equations are changed into an eight-ordersoluble partial differential equation about the displacement function U(s,θ)in which thecoefficients are variable.At the same time,the expressions of the displacement and internalforce components of the shell are also given by the displacement function.As special casesof this paper,the displacement function introduced by V.Z.Vlasov in circular cylindricalshell,the basic equation of the cylindrical shell and that of the circular plate are directlyderived.Under the arbitrary loads and boundary conditions,the general bending problem of theconical shell is reduced to finding the displacement function U(s,θ),and the generalsolution of the governing equation is obtained in generalized hypergeometric function,Forthe axisymmetric bending deformation of the  相似文献   

13.
根据抗拉刚度等效及抗弯刚度等效将换热器管束简化为当量圆筒以考察其对 斜锥壳应力状况的影响,同时根据轴向载荷等效及泊松效应等效,对作用在管板布管限定圆 内的压力载荷及作用在管束外表面的压力载荷进行了当量转换,建立了考虑管板及管束影响 的斜锥壳应力分析简化模型. 有限元计算结果表明,大端转角过渡区存在较大的弯曲应力. 对一系列结构尺寸的斜锥壳进行了计算,整理了斜锥壳大端转角过渡区基于分析设计的应力 强度水平系数.  相似文献   

14.
Non-symmetrical large deformation of a shallow thin conical shell   总被引:4,自引:0,他引:4  
I.IntroductionItisimportanttoresearchnon-symmetricalquestionsofshallowcollicalshellsintheoryoronapplication.Asonekindofpressurevessel'sparts,shallowconicalshellsareverycommonlyusedillellgineerillgpractice,becausethedifficultyofmanul\lctul.illgthemis'small.AlthotlghwelookupmanyChineseandtbreignperiodicalswhicharctlblctobefound,wehavenotyeth'ulldarticlesanddocumentsfornon-symmetricalandnolllinearquestionsofshitllowconictllshells.Oval'rccelltyears,ProlbssorWangXinzhiandhiscolleagueshavedonealot…  相似文献   

15.
Nam-Il Kim  Jaehong Lee 《Meccanica》2013,48(6):1369-1386
The improved torsional analysis of the laminated box beams with single- and double-celled sections subjected to a torsional moment is performed by introducing 14 displacement parameters. For this, a thin-walled laminated box beam theory considering the effects of shear and elastic couplings is presented. The governing equations and the force-displacement relations are derived from the variation of the strain energy. The system of linear algebraic equations with non-symmetric matrix is constructed by introducing the displacement parameters and by transforming the higher order simultaneous differential equations into first order ones. This numerical technique determines eigenmodes corresponding to 12 zero and 2 non-zero eigenvalues and derives displacement functions for displacement parameters based on the undetermined parameter method. Finally, the element stiffness matrix is determined using the member force-displacement relations. The theory developed by this study is validated by comparing several torsional responses from the present approach with those from the finite element beam model using the Lagrangian interpolation polynomials and three-dimensional analysis results using the shell elements of ABAQUS for coupled laminated beams with single- and double-celled sections.  相似文献   

16.
研究了支承在挤压油膜阻尼器上的Jeffcott转子系统的转静件碰摩的弯扭耦合振动特性。建立了系统运动方程,分析了各参数对系统响应的影响。仿真计算结果表明碰摩刚度对系统响应的影响十分明显,增大碰摩刚度更容易使系统响应的周期解失稳;不平衡参数增大,导致系统响应的振动幅度增大,系统更容易出现碰摩现象,进而导致系统周期解失稳;随着扭转刚度的增大,扭转角度变化幅度与快慢均发生变化,在刚度较低时,扭转角变化幅度随时间变化较慢;随着扭转刚度的增大,扭转角幅度变化明显加快;当扭转刚度继续增大,扭转角的幅度变化反而变慢。研究发现,系统响应具有两条通向混沌的道路,即阵发性通向混沌的道路和拟周期通向混沌的道路。  相似文献   

17.
In this paper, a precise transfer matrix method is presented to calculate the structural and acoustic responses of the conical shell. The governing equations of conical shells are written as a coupled set of first order differential equations. The field transfer matrix of the shell and non-homogenous term resulting from the external excitation are obtained by precise integration method. After assembling the field transfer matrixes, the whole matrix describing dynamic behavior of the stiffened conical shell is obtained. Then the structural and acoustic responses of the shell are solved by obtaining unknown sound pressure coefficients. The natural frequencies of the shell are compared with the FEM results to test the validity. Furthermore, the effects of the semi-vertex angle, driving force directions and boundary conditions on the structural and acoustic responses are studied.  相似文献   

18.
扁壳结构的弯曲与扭转振动控制对该类结构的应用具有重要意义。本文采用不影响壳体结构的粗压电纤维复合材料(MFC)作动器对其弯曲与扭转振动进行主动控制。建立局部表面粘贴MFC作动器的开口圆柱扁壳的动力学解析模型,得到了作动力和作动力矩的解析表达式,分析了扁壳结构上MFC作动器在弯曲与扭转振动控制中的作动机理。针对一开口碳纤维圆柱扁壳,设计了模糊PD控制器,开展了定频与随机激励下壳体弯曲与扭转振动控制试验,并与传统PD控制试验效果进行了对比。结果表明:MFC作动器在壳体弯曲和扭转振动控制方面作动能力突出;模糊PD控制器的控制效果优于传统PD控制器的控制效果。  相似文献   

19.
本文利用有限元分析和模型实验研究了在轴向冲击载荷作用下,锥壳中弹性应力波的传播、计算和实验结果表明,结构中存在着弹性纵波和弹性弯曲波的传播,它们传播的速度各不相同,使壳面承受不同的应力状态;讨论了纵波和弯曲波随壳面的衰减;实验指出,由于边界的影响,即使纵波的反射也会产生新的反射弯曲波沿锥面传播。  相似文献   

20.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号