首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of co-rotational finite time blow up solutions to the wave map problem from ${\mathbb{R}^{2+1} \to N}The existence of co-rotational finite time blow up solutions to the wave map problem from \mathbbR2+1 ? N{\mathbb{R}^{2+1} \to N} , where N is a surface of revolution with metric d ρ 2 + g(ρ)2 dθ2, g an entire function, is proven. These are of the form u(t,r)=Q(l(t)t)+R(t,r){u(t,r)=Q(\lambda(t)t)+\mathcal{R}(t,r)} , where Q is a time independent solution of the co-rotational wave map equation −u tt  + u rr  + r −1 u r  = r −2 g(u)g′(u), λ(t) = t −1-ν, ν > 1/2 is arbitrary, and R{\mathcal{R}} is a term whose local energy goes to zero as t → 0.  相似文献   

2.
The quenching rate constants for the singlet states (a′)(1)Σ u (v = 1−17), a (1)Π g (v = 0−14), and w (1)Δ u (v = 0−13) of molecular nitrogen colliding with an N2 molecule are calculated using quantum-chemical approximations. It is shown for the first time that both the intramolecular and intermolecular processes of electronic excitation transfer are significant for these states. Calculated rate constants are in satisfactory agreement with experimental data.  相似文献   

3.
We consider u(x,t) a solution of u t u+|u| p − 1 u that blows up at time T, where u:ℝ N ×[0, T)→ℝ, p>1, (N−2)p<N+2 and either u(0)≥ 0 or (3N−4)p<3N+8. We are concerned with the behavior of the solution near a non isolated blow-up point, as Tt→ 0. Under a non-degeneracy condition and assuming that the blow-up set is locally continuous and N−1 dimensional, we escape logarithmic scales of the variable Tt and give a sharper expansion of the solution with the much smaller error term (Tt)1, 1/2−η for any η>0. In particular, if in addition p>3, then the solution is very close to a superposition of one dimensional solutions as functions of the distance to the blow-up set. Finally, we prove that the mere hypothesis that the blow-up set is continuous implies that it is C 1, 1/2−η for any η>0. Received: 20 June 2001 / Accepted: 6 October 2001  相似文献   

4.
The previously-obtained analytical asymptotic expressions for the Gell-Mann-Low function β(g) and anomalous dimensions in the ϕ4 theory in the limit g → ∞ are based on the parametric representation of the form g = f(t), β(g) = f 1(t) (where tg 0−1/2 is the running parameter related to the bare charge g 0), which is simplified in the complex t plane near a zero of one of the functional integrals. In this work, it has been shown that the parametric representation has a singularity at t → 0; for this reason, similar results can be obtained for real g 0 values. The problem of the correct transition to the strong-coupling regime is simultaneously solved; in particular, the constancy of the bare or renormalized mass is not a correct condition of this transition. A partial proof has been given for the theorem of the renormalizability in the strong-coupling region.  相似文献   

5.
For a given domain ω ⋐ ℝ2 with boundary γ = ∂ω, we study the cardinality of the set $ \mathfrak{A}_\eta \left( \Phi \right) $ \mathfrak{A}_\eta \left( \Phi \right) of pairs of numbers (a, b) for which there is a function u = u (a,b): ω → ℝ such that ∇2 u(x) = au(x) + b ⩾ 0 for xω, u| γ = 0, and ||∇u(s)| − Φ(s) ⩽ η for sγ. Here η ⩾ 0 stands for a very small number, Φ(s) = |∇(s)| / ∫ γ |∇v| d γ, and v is the solution of the problem ∇2 v = a 0 v + 1 ⩾ 0 on ω with v| γ = 0, where a 0 is a given number. The fundamental difference between the case η = 0 and the physically meaningful case η > 0 is proved. Namely, for η = 0, the set $ \mathfrak{A}_\eta \left( \Phi \right) $ \mathfrak{A}_\eta \left( \Phi \right) contains only one element (a, b) for a broad class of domains ω, and a = a 0. On the contrary, for an arbitrarily small η > 0, there is a sequence of pairs (a j , b j ) ∈ $ \mathfrak{A}_\eta \left( \Phi \right) $ \mathfrak{A}_\eta \left( \Phi \right) and the corresponding functions u j such that ‖f u j+1‖ − ‖f u j ‖ > 1, where ‖f u j = max x∈ω |f u j (x)| and f u j (x) = a j u j (x) + b j . Here the mappings f u j : ω → ℝ necessarily tend as j → ∞ to the δ-function concentrated on γ.  相似文献   

6.
In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.  相似文献   

7.
Let b γ (t), b γ(0)= 0 be a fractional Brownian motion, i.e., a Gaussian process with the structure function , 0 < γ < 2. We study the logarithmic asymptotics of P T = P{b γ (t) < 1,□tTΔ} as T→∞, where Δ is either the interval (0,1) or a bounded region that contains a vicinity of 0 for the case of multidimensional time. It is shown that ln P T = - D ln T(1 + o(1)), where D is the dimension of zeroes of b γ (t) in the former case and the dimension of time in the latter. Received: 28 September 1998 / Accepted: 19 February 1999  相似文献   

8.
The closeness of low-lying T1u and T1g levels of C 60 could enable their mixing under an odd parity vibration of (T1 u + T1 g ⊗ (hg + τ1 u)type. In addition, the two levels are susceptible to Jahn-Teller interaction due to five-fold degenerate hg vibrations. This complex problem of (T1u+T1g)⊗(hg1u) vibronic interaction is transformed to a form similar to T2g ⊗ (εg + τ2g) vibronic problem of octahedral symmetry. The problem is analysed in an infinite coupling model and compared with the experimental spectroscopic results for the C 60 radical. The resulting parameters are used to calculate the pair-binding energy and superconducting transition temperature in C 60 n fullerides. Vibronic mixing with the T1g level is found to be responsible for maximising the pair-binding energy at the doping level n=3. It is also found to be an important source of Tc enhancement.  相似文献   

9.
The linear stochastic equation dx β /dt+[1+f β (t)]x β (t)=A sin (Ωt) is discussed. The functionƒ β (t) is defined as a Poissonian noise dependent on a parameterβ>0,ƒ β (t)=β Σ j [δ(t − t j + ) −δ (t − t j )]. The mean frequency of the delta-pulses is chosen asβ-dependent in the formλ(β)=2γ(β −2 + 1) exp(−β) whereγ is a constant from the interval (0, 0.974). With the stochastic functionƒ β (t) defined in this way, attention is paid on the oscillational term of the averaged function 〈x(t)〉, 〈x(t)〉osc=Āsin(Ωt − α). It is found that the dependenceĀ=Ā(β) exhibits one maximum and one minimum. The occurrence of these extrema seems to affirm the presence of stochastic resonance. This work has been supported by the Slovak Grant Agency VEGA under contract No. 1/4319/97.  相似文献   

10.
Bounded solutions of the equation Δ p u = c(x)|u| p−2 u are studied.  相似文献   

11.
The electromagnetic polarizabilities of the nucleon are shown to be essentially composed of the nonresonant α p(E 0+) = + 3.2, α n(E 0+) = + 4.1, the t-channel α t p, n = - β t p, n = + 7.6 and the resonant β p, n(P 33(1232)) = + 8.3 contributions (in units of 10-4fm^3). The remaining deviations from the experimental data Δα p = 1.2±0.6, Δβ p = 1.2±0.6, Δα n = 0.8±1.7 and Δβ n = 2.0±1.8 are contributed by a larger number of resonant and nonresonant processes with cancellations between the contributions. This result confirms that dominant contributions to the electric and magnetic polarizabilities may be represented in terms of two-photon coupling to the σ-meson having the predicted mass m σ = 666MeV and two-photon width Γ γγ = 2.6keV.  相似文献   

12.
Let G be a topological group. For a function f: G → ℝ and hG, the difference function Δ h f is defined by the rule Δ h f(x) = f(xh) − f(x) (xG). A function H: G → ℝ is said to be additive if it satisfies the Cauchy functional equation H(x + y) = H(x) + H(y) for every x, yG. A class F of real-valued functions defined on G is said to have the difference property if, for every function f: G → ℝ satisfying Δ h fF for each hG, there is an additive function H such that fHF. Erdős’ conjecture claiming that the class of continuous functions on ℝ has the difference property was proved by N. G. de Bruijn; later on, F. W. Carroll and F. S. Koehl obtained a similar result for compact Abelian groups and, under the additional assumption that the other one-sided difference function ∇ h f defined by ∇ h f(x) = f(xh) − f(x) (xG, hG) is measurable for any hG, also for noncommutative compact metric groups. In the present paper, we consider a narrower class of groups, namely, the family of semisimple compact connected Lie groups. It turns out that these groups admit a significantly stronger difference property. Namely, if a function f: G → ℝ on a semisimple compact connected Lie group has continuous difference functions Δ h f for any hG (without the additional assumption concerning the measurability of the functions of the form ∇ h f), then f is automatically continuous, and no nontrivial additive function of the form H is needed. Some applications are indicated, including difference theorems for homogeneous spaces of compact connected Lie groups.  相似文献   

13.
Abstract

Nonclassical infinitesimal weak symmetries introduced by Olver and Rosenau and partial symmetries introduced by the author are analyzed. For a family of nonlinear heat equations of the form u t = (k(u) u x)x + q(u), pairs of functions (k(u), q(u)) are pointed out such that the corresponding equations admit nontrivial two-dimensional modules of partial symmetries. These modules yield explicit solutions that look like u(t, x) = F (θ(t) x + φ(t)) or u(t, x) = G(f(x) + g(t)).  相似文献   

14.
Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115μm and 0.089μm results in freezing into a crystalline phase at volume fractionφ of 0.1 and into a glassy state atφ=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[−γ(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector andγ is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[−γ(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameterγ for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.  相似文献   

15.
We consider a Gaussian diffusion X t (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ 2, and an approximating process YetY^{\varepsilon}_{t} converging to X t in L 2 as ε→0. We study estimators [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ 2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process YetY^{\varepsilon}_{t} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} are consistent and asymptotically efficient estimators of γ and σ 2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process YetY^{\varepsilon}_{t} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.  相似文献   

16.
We study shock statistics in the scalar conservation law t u+ x f(u)=0, x∈ℝ, t>0, with a convex flux f and spatially random initial data. We show that the Markov property (in x) is preserved for a large class of random initial data (Markov processes with downward jumps and derivatives of Lévy processes with downward jumps). The kinetics of shock clustering is then described completely by an evolution equation for the generator of the Markov process u(x,t), x∈ℝ. We present four distinct derivations for this evolution equation, and show that it takes the form of a Lax pair. The Lax equation admits a spectral parameter as in Manakov (Funct. Anal. Appl. 10:328–329, 1976), and has remarkable exact solutions for Burgers equation (f(u)=u 2/2). This suggests the kinetic equations of shock clustering are completely integrable.  相似文献   

17.
18.
The spectral properties of the Schr?dinger operator T(t)=−d 2/dx 2+q(x,t) in L 2(ℝ) are studied, where the potential q is defined by q=p(x+t), x>0, and q=p(x), x<0; p is a 1-periodic potential and t∈ℝ is the dislocation parameter. For each t the absolutely continuous spectrum σ ac (T(t))=σ ac (T(0)) consists of intervals, which are separated by the gaps γ n (T(t))=γ n (T(0))=(α n n +), n≥1. We prove: in each gap γ n ≠?, n≥ 1 there exist two unique “states” (an eigenvalue and a resonance) λ n ±(t) of the dislocation operator, such that λ n ±(0)=α n ± and the point λ n ±(t) runs clockwise around the gap γ n changing the energy sheet whenever it hits α n ±, making n/2 complete revolutions in unit time. On the first sheet λ n ±(t) is an eigenvalue and on the second sheet λ n ±(t) is a resonance. In general, these motions are not monotonic. There exists a unique state λ0(t) in the basic gap γ0(T(t))=γ0(T(0))=(−∞ ,α0 +). The asymptotics of λ n ±(t) as n→∞ is determined. Received: 5 April 1999 / Accepted: 3 March 2000  相似文献   

19.
In this paper, we consider generalized holographic and Ricci dark energy models where the energy densities are given as ρ R =3c 2 M pl2 Rf(H 2/R) and ρ h =3c 2 M pl2 H 2 g(R/H 2), respectively; here f(x), g(y) are positive defined functions of the dimensionless variables H 2/R or R/H 2. It is interesting that holographic and Ricci dark energy densities are recovered or recovered interchangeably when the function f(x)=g(y)≡1 or f(x)=Id and g(y)=Id are taken, respectively (for example f(x),g(x)=1−ε(1−x), ε=0or1, respectively). Also, when f(x)≡xg(1/x) is taken, the Ricci and holographic dark energy models are equivalent to a generalized one. When the simple forms f(x)=1−ε(1−x) and g(y)=1−η(1−y) are taken as examples, by using current cosmic observational data, generalized dark energy models are considered. As expected, in these cases, the results show that they are equivalent (ε=1−η=1.312), and Ricci-like dark energy is more favored relative to the holographic one where the Hubble horizon was taken as an IR cut-off. And the suggested combination of holographic and Ricci dark energy components would be 1.312R−0.312H 2, which is 2.312H2+1.312[(H)\dot]2.312H^{2}+1.312\dot{H} in terms of H 2 and [(H)\dot]\dot{H} .  相似文献   

20.
We consider front solutions of the Swift–Hohenberg equation ∂ t u= -(1+ ∂ x 2)2 u + ɛ2 u -u 3. These are traveling waves which leave in their wake a periodic pattern in the laboratory frame. Using renormalization techniques and a decomposition into Bloch waves, we show the non-linear stability of these solutions. It turns out that this problem is closely related to the question of stability of the trivial solution for the model problem ∂ t u(x,t) = ∂ x 2 u (x,t)+(1+tanh(x-ct))u(x,t)+u(x,t) p with p>3. In particular, we show that the instability of the perturbation ahead of the front is entirely compensated by a diffusive stabilization which sets in once the perturbation has hit the bulk behind the front. Received: 23 February 2001 / Accepted: 27 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号