首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Lustre is one of the most important decorative techniques of the Medieval and Renaissance pottery of the Mediterranean basin, capable of producing brilliant metallic reflections and iridescence. Following the recent finding that the colour of lustre decorations is mainly determined by copper and silver nanoclusters dispersed in the glaze layer, the local environment of copper and silver atoms has been studied by extended X-ray absorption fine structure (EXAFS) spectroscopy on original samples of gold and red lustre. It has been found that, in gold lustre, whose colour is attributed mainly to the silver nanocluster dispersion, silver is only partially present in the metallic form and copper is almost completely oxidised. In the red lustre, whose colour is attributed mainly to the copper nanocluster dispersion, only a fraction of copper is present in the metallic form. EXAFS measurements on red lustre, carried out in the total electron yield mode to probe only the first 150 nm of the glaze layer, indicated that in some cases lustre nanoclusters may be confined in a very thin layer close to the surface. PACS 61.46.+w; 81.05.Kf; 61.10.Ht  相似文献   

2.
《Applied Surface Science》2002,185(3-4):206-216
It has been recently shown that lustre decoration of medieval and renaissance pottery consists of silver and copper nanocrystals, dispersed within the glassy matrix of the ceramic glaze. Lustre surfaces show peculiar optical effects such as metallic reflection and iridescence. In many cases, lustre appears overlapped to colored drawings. Here we report the findings of a study on glazes, pigments and lustre of several shards belonging to Deruta and Gubbio pottery of XVI century. The components of glazes and pigments have been identified. Lustre is confirmed to be characterised by silver and copper metal nanocrystals inhomogeneously dispersed in the glassy matrix of the glaze. In the case of lustre overlapped to colored decorations, we found two contradictory cases. The first consists of a lustre surface successfully applied over a blue smalt geometrical drawing. The second consists of a lustre surface, unsuccessfully applied over a yellow lead-antimonate pigment. The yellow pigment hinders the formation of lustre and removes crystals of tin dioxide, normally present in the glaze as opacifier.  相似文献   

3.
The aim of this work is to gain a further insight into the knowledge of the production process of lustre-decorated ancient majolicas. Lustre is a sophisticated technique employed in the decoration of majolicas as used in central Italy during the Renaissance period. It consists of a beautiful iridescent gold or ruby-red thin metallic film, containing silver, copper and other substances and obtained in a reducing atmosphere on a previously glazed ceramic. Nowadays, it is not possible to replicate the outstanding results obtained by the ancient ceramicists, since the original recipes were lost. It is quite interesting to study lustre-production technology by means of analytical techniques now employed for advanced research on materials (XRD, ETAAS, ICP-OES, TEM-EDX-SAED and UV-Vis). In this work, we have focussed our attention on ceramic fragments decorated with both gold and ruby-red lustres, which were difficult to obtain due to complex reduction conditions required and which were a prerogative of Gubbio production. The two lustre colours differ in their chemical composition as well in their nanostructure. The presence of bismuth was disclosed and it was ascertained to be a distinctive feature of the Italian production. PACS 78.67.Bf; 81.05.Je; 68.37.Lp; 68.37.Hk; 68.90.+g  相似文献   

4.
It has been recently shown that lustre decoration of Medieval and Renaissance pottery consists of silver and copper nanoparticles, dispersed within the glassy matrix of the ceramic glaze. Lustre surfaces show peculiar optical effects, such as metallic reflection and iridescence. Here we report the findings of a study on lustred glazes of several shards belonging to Iranian pottery of the 10th and 13th centuries, decorated on both sides. Two different glazes, depending on the side of the sample, have been identified. Different lustre chromatic effects are characterised by the relative presence of silver- and copper-metal nanoparticles dispersed in the glassy matrix. PACS 61.46.+w  相似文献   

5.
Transmission electron microscopy (TEM) has been used to investigate the nanoscale morphology of some contemporary lustre glazes. High-resolution TEM, electron energy-loss spectroscopy and energy-dispersive X-ray analysis data imply that two kinds of nanoparticles are present in the lustre layer, namely metallic Ag and metallic Cu particles. Moreover, these particles appear separated in the material. The dense top layer consists of Ag particles and the particles occurring below this upper layer are metallic Cu. A depth profile of the sizes of the nanoparticles with respect to their penetration depths has been drawn. The particle sizes are mainly situated in the range of 5 nm to 15 nm, though smaller and larger particles occur frequently. PACS 68.37.Lp; 61.46.+w; 81.05.Pj; 79.20.Uv  相似文献   

6.
Lustre was one of the most sophisticated techniques for the decoration of majolicas during the Renaissance period. Lustre consists of a thin metallic film containing silver, copper and other substances like iron oxide and cinnabar applied in a reducing atmosphere on a previously glazed ceramic. In this way, beautiful iridescent reflections of different colours (in particular gold and ruby-red) are obtained. The characterisation and the study of lustre-decorated majolicas is of great interest for archaeologists, but also offers possibilities for producing pottery with outstanding decoration today, following ancient examples, since nowadays Italian artisans are interested in the reproduction of the ancient recipes and procedures. Moreover, it can even suggest new procedures for obtaining uniform thin metallic films for technological applications. A study has been carried out on ancient lustre layers using numerous different analytical techniques such as XRD, SEM–EDX, TEM–EDX–SAED, ETAAS, ICP–OES, UV–vis reflectance spectroscopy and SAXS. Lustre films were shown to be formed by copper and silver clusters of nanometric dimension. The colour and the properties of the lustre films depend on the elemental composition of the impasto applied to the ceramic surface as well as on other factors like the metallic nanocluster dimension, the firing conditions, the underlying glaze composition and the procedure used. Received: 12 August 2002 / Accepted: 14 August 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +39-6/9067-2445, E-mail: pad@mlib.cnr.it  相似文献   

7.
It has recently been shown that lustre decoration of medieval and Renaissance pottery consists of silver and copper nanoparticles dispersed in the glassy matrix of the ceramic glaze. Here the findings of an X-ray absorption fine structure (XAFS) study on lustred glazes of shards belonging to 10th and 13rd century pottery from the National Museum of Iran are reported. Absorption spectra in the visible range have been also measured in order to investigate the relations between colour and glaze composition. Gold colour is mainly due to Ag nanoparticles, though Ag+, Cu+ and Cu2+ ions can be also dispersed within the glassy matrix, with different ratios. Red colour is mainly due to Cu nanoparticles, although some Ag nanoparticles, Ag+ and Cu+ ions can be present. The achievement of metallic Cu and the absence of Cu2+ indicate a higher reduction of copper in red lustre. These findings are in substantial agreement with previous results on Italian Renaissance pottery. In spite of the large heterogeneity of cases, the presence of copper and silver ions in the glaze confirms that lustre formation is mediated by a copper- and silver-alkali ion exchange, followed by nucleation and growth of metal nanoparticles.  相似文献   

8.
By means of the combined use of surface and micro-analytical techniques the surface chemical composition of ancient coins and some aspects of their manufacturing techniques and of degradation mechanisms have been elucidated. Two case histories are described concerning silver Roman Republican coins and some coins plated with thin films of silver and gold. In particular, the coinage methods, the silvering and gilding techniques and the origin of the embrittlement of these selected Roman coins have been studied by means of the combined use of selected-area X-ray photoelectron spectroscopy (SA-XPS) and scanning electron microscopy and energy-dispersive spectrometry (SEM+EDS). This innovative approach has been utilised in order to gain further insight into the microchemical structure of the external regions of the coins as well as of the bulk features. The results show the use of mercury to coat a copper or silver core with a thin film of precious metals that could be considered the most important advance in the technology of gilding to be made in antiquity. Furthermore, the microchemical investigation of brittle Roman silver coins has allowed us to identify the origin of this troublesome problem. The microchemical results indicate that brittleness is induced by the presence of a low amount of lead that is retained in supersaturated solution when the cast blank was produced. This latter element segregates at the grain boundaries during the coin production and the subsequent long-term ageing at room temperature, thus inducing the alloy fracturing along the weakened grain boundaries. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

9.
In the present paper the main results obtained, over a period of more than ten years, from a series of studies concerning the characterization of Italian Renaissance lustred majolicas (from Gubbio and Deruta, Umbria, Italy) are presented. Lustre decoration is a well-known technique, consisting in the application of a thin metallic iridescent film, containing silver and copper nanoparticles, over a previously glazed ceramic object. The technique had its origin in Persia (IX century), was imported by Moorish in Spain, and then developed in central Italy during the Renaissance period. Numerous analytical techniques (among which, ETASS, XRD, UV–Vis, SEM-EDX) have been employed for the characterization of lustred ceramic shards, allowing one to acquire information on both lustre chemical composition and nanostructure. In this way it was shown how some technological parameters, such as the firing conditions, are mandatory to obtain the final result. The presence of a specific marker of the lustre Italian production, i.e., cosalite (Pb2Bi2S5), has been also highlighted. From the study of the ceramic body composition (by means of XRD and ICP-OES and in particular of chemometric techniques) acquired on more than 50 ceramic shards it was possible to discriminate between Deruta and Gubbio production, in this way allowing one to assign objects of uncertain provenance to a specific site. Finally, the most interesting results obtained studying excellent lustred masterpieces from Renaissance belonging to important museums are here presented. In particular, with the use of nondestructive techniques (PIXE, RBS, and portable XRD), the production of Mastro Giorgio Andreoli from Gubbio was investigated. By means of the same analytical approach, one of the first examples of lustre in Italy (the famous Baglioni’s albarello) was examined, and the controversial question of its attribution to Italian production was scientifically faced.  相似文献   

10.
Luster is a metallic decoration produced since early Islamic times (9th century AD in Iraq). Different studies have shown that medieval lusters are a metal-glass nanocomposite (metal nanoparticles embodied in a silica glassy matrix) obtained from the reaction of a copper and/or silver containing paint with a glaze. The mechanisms of formation of these metallic-like layers are investigated by laboratory reproductions of Medieval luster. Copper and silver lusters are obtained based on different thermal paths and atmospheres, and by using different glaze compositions. The ionic exchange between Cu+ and Ag+ ions from the luster paint with Na+ and K+ of the glaze, is demonstrated in either oxidizing or inert atmospheres and at firing temperatures between 500 °C and 600 °C. The reduction of copper and silver to their metallic state is obtained by introducing a reducing gas afterwards. The lusters are non-metallic red ruby copper or green with brown spots silver when developed over alkaline glazes, while they appear coppery and golden metallic when developed over mixed alkaline-lead glazes. SR-XRD, optical absorption and microprobe chemical analysis of the lusters indicate that the total amount of copper and silver, and the nature and size of the nanoparticles, are similar in both cases. Further work is needed to clarify the origin of these differences. PACS 81.05.Pj; 81.07.b; 81.16.Be; 78.67.Bf; 42.50.Fx  相似文献   

11.
《Applied Surface Science》2002,185(3-4):309-316
In this work some Renaissance lustre decorated ceramics have been examined. Our attention was directed to lustre which is a thin decorative metallic film applied on the surfaces of previously glazed ancient pottery.Some 16th century lustre ceramics shards from Deruta, Umbria (Italy) have been analysed by small angle X-ray scattering (SAXS) in order to characterise the dimension of the metal nanocrystals forming the thin lustre layer. This technique appeared to be a powerful tool to characterise lustre films nanostructure and may be successfully used for this purpose together with transmission electron microscopy (TEM). Furthermore, SAXS measurements are extremely suitable for the determination of polydispersity and average interparticle distance.The lustre surfaces have been also analysed by scanning electron microscopy plus X-ray energy dispersive spectrometry (SEM–EDX) in order to identify the metals present (silver, copper or both of them) and to establish copper/silver ratios. From the comparison between SAXS results and compositional data, it was possible to conclude that copper particles are smaller than the silver ones. We have evidenced how the microtexture as well as the chemical composition of the lustre layers are responsible for the gold or red colour typical of the lustre films.  相似文献   

12.
The wires from five Qaaba curtains, dated between the 16th and 19th centuries, presently exhibited at the Topkapı Palace Museum in Istanbul, and embroidered with gold gilded silver and silver wires, were characterized physically and chemically. The curtains are part of the Kiswa, the cover of the Qaaba, the holy place of pilgrimage in Mecca for Muslims. Scanning electron microscope (SEM) (including field emission sem) studies were carried out using energy dispersive spectrometry (EDS) as well as atomic absorption spectroscopy (AAS), and inductively coupled plasma (ICP) for chemical analysis. The chemical and physical composition of the wires and their coatings, and the analysis of corrosion products were made, and the present state of the wires were evaluated and compared. PACS 81.05.Bx; 81.70.Jb; 82.80.Ej; 68.37.Hk; 68.37.Vj  相似文献   

13.
The bulk and surface chemical composition of Renaissance coins minted at Gubbio (Central Italy) from 1508 to 1516 and from 1521 to 1538 by Francesco Maria della Rovere is investigated by means of the combined use of different analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and optical microscopy (OM). The aim of the work is to determine the bulk chemical composition of these commonly used coins at Gubbio, to ascertain their surface nature and if they were coated by a thin film of silver or other white metals similar to silver.The results indicate that the coins were produced by coating a copper core with a thin film of silver and antimony, and also with lead whose thickness is of a few microns which is now scarcely present because the original silvered surface was almost entirely removed by degradation phenomena. Furthermore, the SEM+EDS results show that the surface content of silver and antimony cannot be attributed to long-term selective corrosion phenomena leaving the coin slightly silver or antimony enriched. Therefore, the presence of silver or apparently silver-like metals i.e. antimony and lead, could be considered as a deliberate surface finishing of the coins obtained via inverse segregation or intentional selective corrosion based on pickling solutions or a combination of them. From a historical point of view the presence of a Ag or Sb film on the surface of the coins discloses the occurrence of a period of economic difficulties. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

14.
Lustre is known as one of the most significant decorative techniques of Medieval and Renaissance pottery in the Mediterranean basin, characterized by brilliant gold and red metallic reflections and iridescence effects. Previous studies by various techniques (SEM-EDS and TEM, UV-VIS, XRF, RBS and EXAFS) demonstrated that lustre consists of a heterogeneous metal-glass composite film, formed by Cu and Ag nanoparticles dispersed within the outer layer of a tin-opacified lead glaze. In the present work the investigation of an original gold lustre sample from Deruta has been carried out by means of glancing-incidence X-ray diffraction techniques (GIXRD). The study was aimed at providing information on structure and depth distribution of Ag nanoparticles. Exploiting the capability of controlling X-ray penetration in the glaze by changing the incidence angle, we used GIXRD measurements to estimate non-destructively thickness and depth of silver particles present in the first layers of the glaze. PACS 61.10.Nz; 61.10.Eq; 81.70.-q; 61.46.+w  相似文献   

15.
Within the framework of a project financially supported by the European Commission (contract Nr. 509126, acronym PROMET) the metallurgical techniques used by Romans and Greeks for coating the copper core of coins with a thin or thick layer of gold or silver are studied by means of the combined use of scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS) and optical microscopy (OM) techniques.This approach is utilised to gain further insight into the micro-chemical structure of the external regions of the coins as well as into the bulk metallurgical features. The results indicate that several methods were used by the Greek and Roman craftsmen including the mechanical application of a thin malleable gold or silver foils to be welded via thermal treatment. The analytical approach is also used for investigating the corrosion products grown on the coins during the long-term burial and for identifying degradation mechanisms.PACS 68.55Jk; 68.35 Dv; 68.37Hk; 68.55 Nq; 81.05 Bx  相似文献   

16.
Luminescence measurements have been performed on several Italian Renaissance ceramic shards produced in central Italy, as well as on some others from Hispano–Moresque and Fatimid periods. The aim of this study was the characterisation of the raw materials used to manufacture lustre decorated majolica. At first, the thermoluminescence (TL) dating of all ceramic bodies was performed, because the shards lacked sure chronological attribution, having been provided by private collectors, or found during emergency restoration works or archaeological surveys. To characterise the defects and the recombination centers of the different components of the ceramics (ceramic body, glaze, glaze, and lustre), radioluminescence (RL) measurements have been performed on samples representative of each historical period. The dating results are reported, as well as the preliminary RL results. PACS 78.66Jg; 87.66Sq; 81.05.Mh  相似文献   

17.
In the framework of the PROMET project (European Commission contract No. 509126) aimed to develop new analytical techniques and materials for monitoring and protecting metal artefacts and monuments from the Mediterranean region, the corrosion products grown on silver Roman coins during archaeological burial is studied by means of scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD) and optical microscopy (OM) techniques. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

18.
This study shows the first Raman microscopy (RM) and scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM‐EDX) characterization of two 14th and 15th century lead‐glazed and luster ceramics from the Manises and Paterna workshops (Valencia, Spain) produced after the Aragon Christian conquest of the Iberian Peninsula (14th century). According to experts, these coetaneous ceramics were most probably involved in a process of technological transfer from the Islamic area of Southeast Spain to the Christian area of Valencia (East Spain) at the beginning of the 14th century; later on, the celebrated Manises and Paterna workshops were formed. Although these ceramics have been studied widely in terms of production technology (ceramic body, glazes and luster) using an array of diverse analytical techniques, until now, an RM study has not been carried out. This paper presents results regarding the complex chemical composition of the glaze and luster coloring agents, and the quality of color manufacturing processes, elucidating firing conditions via spectral components analysis (i.e., Qn for stretching/bending components) and polymerization index (Ip), emphasizing chronology and pigment technology changes between both Valencian workshops. Coloring agents identified in glazes and lusters were cobalt present in blue glazes, copper in greenish glazes, copper and cobalt in the turquoise glaze, and pyrolusite in black glazes. Tin oxyde was used as an opacifier in white glazes. Two luster manufacture recipes were recognized mainly based on copper and silver compounds. Calculated firing temperatures were up to 1000 °C for white glazes and up to 600 °C for luster and color glazes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The lustre decoration is one of the most famous decorations of glazed ceramics in the Mediterranean basin. Unfortunately, the recipes and fabrication techniques used during medieval times have been lost and that is why these objects have been widely studied. But until now, little was known on their optical properties. In this work it is shown that, despite the common belief, the chemical composition of the decoration (copper and/or silver nanoparticles) is not the only relevant parameter in order to explain the optical properties of lustres. By the use of optical characterization and the elaboration of a model – based on the Maxwell Garnett theory and the Abeles matrices theory for interferences –, simulated reflection spectra have been obtained in good agreement with the measured reflection spectra, confirming that the concentration of metal, the size of the metallic nanoparticles as well as the optical index of the glaze play a key-role in order to explain the coloured metallic shine exhibited by the lustres. PACS 70; 78; 78.20-e; 78.20.Bh; 78.20.Ci; 78.40.-q; 78.66-w; 78.67.Bf; 78.67.-n; 78.67.Pt  相似文献   

20.
A large number of ceramic samples (from the 10th to the 19th century), found during the excavation of Sicilian archaeological sites (Syracuse, Caltagirone, Sciacca and Piazza Armerina), have been studied by combining scanning electron microscopy, energy-dispersive X-ray spectrometry and optical microscopy. Attention has been focused on the microchemical and microstructural properties of the painted surfaces to investigate the nature of the enamels and pigments in the decorative layers. The general perspective has been the identification of consistent archeometric criteria, other than the standard stylistic considerations, which can be used for a reliable recognition of the production sites. The results collected for each ceramic typology were used to cluster the different ceramic reference groups in a wide database suitable for a reliable discrimination of the provenance of artefacts. Moreover, the same compositional and microstructural data allow the identification of the raw materials used for pigments. There is evidence of some differences with existing information found in the literature concerning the formulas used in ancient times. Finally, attention has also been devoted to identify the technological aspects of the manufacturing techniques and firing conditions adopted for each typology of glaze coating depending on different ceramic materials .PACS 81.05.Je; 82.80.-d; 68.37.Hk; 68.55.-a  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号