首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, the smelting activities of lead and zinc are the loudest sources of local pollution by emission in the troposphere of dust of micrometer size containing PbSO4. As the particles evolve in the troposphere, their chemical and physical properties – and hence their characteristics such as toxicity – change by accumulation of atmospheric heterogeneous reactions. Calcite (CaCO3) represents a large part of the mineral fraction in tropospheric aerosols with aerodynamic diameters less than 10 μm. The calcite particles are expected to react with PbSO4 particles. In an effort to model the chemical behaviour of PbSO4 individual particles in the troposphere, we present the in situ Raman imaging results during the course of the reactions in a water droplet of PbSO4 particles with a calcite microcrystal surface. The computer-microcontrolled XY scanning and Z focusing of confocal Raman imaging combined with multivariate curve resolution (MCR) of Raman images have resolved the severe spectral overlaps of the Raman spectra which are not resolved by the spatial resolution of the instrument (1 μm3). The results pointed out the identification and the mapping of Pb3(CO3)2(OH)2, PbCO3 and CaSO4·2H2O (gypsum) on the calcite surface.  相似文献   

2.
A mixture of natural and anthropogenic particles is ubiquitous in the troposphere and exerts an important influence on air quality. This work reports the study of mixing and heterogeneous chemistry of particles of natural-like mineral dust (CaCO(3)) and anthropogenic-like microparticle (PbSO(4)) in turbulent air flow under varying relative humidity. Sparse monolayers of laboratory-generated particles were collected on substrates using impaction. The grain size distribution and chemistry of micrometer-sized particles were determined as CaCO(3)-PbSO(4) internal and external mixtures by Raman imaging, scanning electron microscopy, and time-of-flight static secondary ionization mass spectrometry. The condensation of a thin water layer on mixed aggregates initiates the formation of complex internal mixtures of Pb(3)(CO(3))(2)(OH)(2), PbCO(3), CaSO(4)·2H(2)O, CaCO(3), and PbSO(4) fine particles. These heterogeneous chemistry processes which may occur in ambient air can increase dramatically the amounts of hazardous breathable particles.  相似文献   

3.
Airborne particles with aerodynamic diameter in the 10-1 microm range have been collected in an industrial/urban zone by impaction and have been investigated by automated confocal Raman microspectrometry. The computer-microcontrolled XY scanning and Z focusing of Raman images provided many pixel Raman spectra which are characteristics of complex mixture at level of individual particle. The large heterogeneity was not resolved by the spatial resolution of the instrument which is limited by the optical diffraction. The severe spectral overlaps generated by heterogeneity were resolved by multivariate curve resolution (MCR) methods. The purity based method (SIMPLISMAX) was used to resolve both luminescence spectra and pure Raman spectra without prior information. The MCR-alternating least square (ALS) was used as a refined method of both spectra and spectral concentrations. The reconstructing Raman images of the respective spectral contribution supply a versatile potential to characterize the chemistry of atmospheric aerosols at the level of the individual particles.  相似文献   

4.
The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per microm2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per microm2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 microm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to + 200 degrees C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.  相似文献   

5.
Burneau A  Tazi M  Bouzat G 《Talanta》1992,39(7):743-748
Raman spectra are used to determine the formation constants of uranyl sulphate complexes in aqueous solutions at 20 degrees and remedy the confusion existing in this area in the available literature. Solutions with a varying total sulphate concentration and an ionic strength lower than 0.4M are analysed. The species UO(2)SO(4) and UO(2)(SO(4))(2-)(2) are characterized by a resolved Raman band at 861 cm(-1) and an unresolved one at 852 cm(-1), corresponding to the uranyl symmetrical stretching vibration. The equilibrium constants, in term of activity (standard state 1M), are found to be about 1400 and 11, respectively, for the consecutive reactions: UO(2+)(2)(aq)+SO(2-)(4)(aq)=UO(2)SO(4)(aq) and UO(2)SO(4)(aq)+SO(2-)(4)(aq)=UO(2)(SO(4))(2-)(2)(aq).  相似文献   

6.
Malecha M  Bessant C  Saini S 《The Analyst》2002,127(9):1261-1266
Raman microspectroscopy is ideally suited to surface analysis as it allows detailed chemical information to be acquired from surfaces at a relatively high spatial resolution (typically 1 microm). Using a motorised sample table or probe, it is possible to raster scan a surface to obtain spatially resolved chemical information. Visualisation of the acquired data is a problem, however, as the spectrum acquired at each point can contain several hundred individual intensity measurements. Existing visualisation methods are limited to plotting each scanned point with an intensity determined from the measured intensity at a single wavenumber, or the similarly between the point's spectrum and a reference spectrum. Such methods are wasteful as a lot of acquired information is discarded, and results are prone to misinterpretation due to background variance and instrumental noise. In this paper we introduce a new method that uses principal components analysis (PCA) to reduce the spectrum at each point to three factors that are then used to define the red, green and blue components of the corresponding point on a false colour map. To increase the effective resolution, interpolation is used to approximate the colours corresponding to points between those actually scanned. To demonstrate the technique, the internal surface of a beverage can, contaminated with a 40 microm diameter carbonised oven impurity, consisting mainly of sp2- and sp3-hybridised saturated carbon bonds, has been used as a case study.  相似文献   

7.
The origin of the surface potential of calcium carbonate in aqueous dispersions and the dissolution of calcite in systems containing excess Ca(2+) and CO(3)(2-) have been the subjects of this study. In addition, stabilization of calcite particles with an anionic polyelectrolyte (sodium polyacrylate (NaPA)) and the effect on surface potential and dissolution of calcite have been studied. Preferential dissolution of either Ca(2+) or CO(3)(2-) from the surface, which is governed by the partial pressure of CO(2) in solution and the pH of the solution, mainly determines the surface potential. Both lattice ions (Ca(2+) and CO(3)(2-)) adsorb onto the surface and thus alter the surface potential. NaPA adsorbs strongly onto the calcite surface regardless of background electrolyte concentration, and reverses the surface potential to negative values. Chelation of the surface due to NaPA can be partly prevented by adding Ca(2+) to the dispersion.  相似文献   

8.
In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH(4))Na(PO(4))·4H(2)O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm(-1) (Cave) and 922 cm(-1) (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm(-1). Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO(4)(3-), H(2)O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.  相似文献   

9.
Precise spatio-temporal organization of chemical, hydrodynamic, and mechanical processes is typical for biological systems where particular chemical reactions have to accrue in precisely assignment place and time. It is rarely studied and observed in chemical systems. We report unusual precipitation pattern formation of PbSO(4) in chemical media (Pb(2+)-Chlorite-Thiourea System). We have found that there is a region in a plane of initial concentrations of chlorite ions and thiourea where precipitation of lead sulfate appears in a form of ring if a pellet of lead nitrate is placed into the system. The whole process may be divided into three stages: movement of first circular front of lead containing solution, formation of a ringlike pattern of lead sulfate, and finally, propagation of this pattern resulting in a formation of ring with final inside diameter. Our experiments indicate that the following values are reproducible and quantify the PbSO(4) ring evolution: induction time, radius of the ring birth, speed of ring propagation toward the center, and final inside radius of the ring. Numerical solution of kinetic equations allowed us to give a qualitative explanation for the phenomenon observed. Formation and evolution of the PbSO(4) rings are caused by interplay of concentration gradients in the system and chemical reactions that occur in excitable chlorite-thiourea system. Chemical reactions and hydrodynamic processes form a complex causal network that made morphogenesis of this unusual pattern possible.  相似文献   

10.
The cyanogel system involving PdCl(4)(2-) and the mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-) is reported. The system has been characterized by UV-vis absorption, diffuse reflectance infrared, and resonance Raman spectroscopies. Gelation occurs through coordination of Pd(II) to the nitrogen atom of terminal cyanide ligands in the mixed-valence complex. Irradiation into the Fe(II) --> Pt(IV) intervalent electron transfer (IT) band of [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-) results in the formation of a variety of Prussian-blue-like species within the rigid cyanogel matrix. Photochemical and dark mechanisms involving coupled cyanide loss and Fe(II) oxidation are proposed for the formation of Prussian-blue-like species. The optical contrast between irradiated and nonirradiated regions of the gel enables photochemical image generation with at least 12 microm resolution. This capability is demonstrated through the production of a series of diffraction gratings in cyanogel samples.  相似文献   

11.
3D surface‐enhanced Raman scattering (SERS) imaging with highly symmetric 3D silver microparticles as a SERS substrate was developed. Although the synthesis method is purely chemical and does not involve lithography, the synthesized nanoporous silver microparticles possess a regular hexapod shape and octahedral symmetry. By using p‐aminothiophenol (PATP) as a probe molecule, the 3D enhancement patterns of the particles were shown to be very regular and predictable, resembling the particle shape and exhibiting symmetry. An application to the detection of 3D inhomogeneity in a polymer blend, which relies on the predictable enhancement pattern of the substrate, is presented. 3D SERS imaging using the substrate also provides an improvement in spatial resolution along the Z axis, which is a challenge for Raman measurement in polymers, especially layered polymeric systems.  相似文献   

12.
Pb及Pb-7w/O Sb合金在氧析出电位区生长的阳极膜   总被引:1,自引:0,他引:1  
卫昶  陈霞玲  周伟舫 《化学学报》1992,50(5):467-472
分别测量了Pb及Pb-7w/0Sb在4.5mol.dm^-^3H^2SO~4(30℃)中于1.3和1.5V(vs.Hg/Hg~2SO~4/4.5mol.dm^-^3H^2SO~4)下在不同时间生长的阳极膜的交流阻抗谱, 并使用线性电位扫描法分析了上述阳极膜的相组成。讨论了上述阳极膜进行的电化学反应的机理, 并据此提出它们的等效电路。实验结果表明上述阳极膜的真实表面积随生长时间而增加, 该膜多孔, 主要由外层为PbO~2的PbO.PbSO~4微粒组成, 锑能显著抑制PbO~2的生长, 特别是在1.3V时。  相似文献   

13.
New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.  相似文献   

14.
A model of adsorption and recombination of OH radicals was developed for nonreactive solid surfaces of atmospheric interest. A parametrization of this heterogeneous mechanism was carried out to determine the role of the catalytic properties of these solid surfaces, taking into account the adsorption energy, defects, surface diffusion, and chemical reactions in the gas-solid interface. The uptake process was simulated for diffusion-controlled chemical reactions on the surface on the basis of Langmuir-Hinshelwood and Eley-Rideal mechanisms. Using an analytical approach and the Monte Carlo technique, we show the dependencies of the uptake probability of the heterogeneous reactions on the OH concentration and adsorption energy. The model is employed in the analysis of the empirically derived uptake coefficient for water ice, Al(2)O(3), NaCl, NH(4)NO(3), NH(4)HSO(4), and (NH(4))(2)SO(4). We found the following values for the free energy of adsorption of OH radicals: E(ice) = 7.3-7.6 kcal/mol, E(Al)(2)(O)(3) = 11-11.7 kcal/mol, E(NH)(4)(NO)(3) = 10.2 kcal/mol, E(NaCl) = 10.2 kcal/mol, E(NH)(4)(HSO)(4) = 9.8 kcal/mol, and E((NH)(4))(2)(SO)(4) = 9.8 kcal/mol. The atmospheric implications of the catalytic reactions of OH with adsorbed reactive molecules are discussed. The results of the modeling of the uptake process showed that the heterogeneous decay rate can exceed the corresponding gas-phase reaction rate under atmospheric conditions.  相似文献   

15.
The NaF-AlF(3) system with additions of CaF(2) and MgF(2) has been studied with Raman and vapor pressure measurements for 3 >/= CR (NaF/AlF(3) molar ratio) >/= 1 and up to 50 mol % additive. The results show that the binary melt can be described using the two equilibria AlF(6)(3)(-) = AlF(6)(2)(-) + F(-) and AlF(5)(2)(-) = AlF(4)(-) + F(-) with equilibrium constants 0.25 and 0.05, respectively, at 1293 K. Both reactions have positive reaction enthalpies. The first equilibrium is strongly shifted to the right resulting in a melt mixture with very low AlF(6)(3)(-) concentrations even at the Na(3)AlF(6) composition. Evidence for nonideal mixing of anions was found. For the ternaries, models based on Raman data are presented and compared with vapor pressure measurements. Good agreement is observed when association between the additives, CaF(2) or MgF(2), with the AlF(5)(2)(-) ions in the melt was considered. This association could be experimentally observed through a band broadening and a slight shift in the AlF(5)(2)(-) band frequency. Our vapor pressures and Raman data both indicate that MgF(2) clearly acts as an acid when added to NaF-AlF(3) melts of any composition. When CaF(2) is added, a slight decrease of vapor pressure occurs. Raman data indicate a decrease of AlF(4)(-) concentration, corresponding to a dissociation of CaF(2) with liberation of F(-) ions. All these results are, however, very much dependent on the initial melt composition. These data are explained in terms of acid-base, dilution, and association reactions of the solute with the solvent.  相似文献   

16.
We have realized a scanning near-field infrared microscope in the 3-4 microm wavelength range. As a light source, a tunable high power continuous wave infrared optical parametric oscillator with an output power of up to 2.9 W in the 3-4 microm range has been set up. Using scanning near field infrared microscopy (SNIM) imaging we have been able to obtain a lateral resolution of < or =30 nm at a wavelength of 3.2 microm, which is far below the far-field resolution limit of lambda/2. Using this "chemical nanoscope" we could image a sub-surface structure of implanted gallium ions in a topographically flat silicon wafer giving evidence for a near-field contrast. The observed contrast is explained in terms of the effective infrared reflection as a function of the sub-surface gallium doping concentration. The future use of the setup for nm imaging in the chemically important OH, N-H and C-H stretching vibration is discussed.  相似文献   

17.
Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry   总被引:1,自引:0,他引:1  
Analytical methods are pursued to measure the identity and location of biomolecules down to the subcellular (microm) level. Available mass spectrometric imaging methods either compromise localization accuracy or identification accuracy in their analysis of surface biomolecules. In this study, imaging FTICR-MS is applied for the spatially resolved mass analysis of rat brain tissue with the aim to optimize protein identification by the high mass accuracy and online MS/MS capabilities of the technique. Mass accuracies up to 6 ppm were obtained in the direct MALDI-analysis of the tissue together with a spatial resolution of 200 microm. The spatial distributions of biomolecules differing in mass by less than 0.1 Da could be resolved, and are shown to differ significantly. Online MS/MS analysis of selected ions was demonstrated. A comparison of the FTICR-MS imaging results with stigmatic TOF imaging on the same sample is presented. To reduce the extended measuring times involved, it is recommended to restrict the FTICR-MS analyses to areas of interest as can be preselected by other, faster imaging methods.  相似文献   

18.
The carbonaceous Murchison chondrite is one of the most studied meteorites. It is considered to be an astrobiology standard for detection of extraterrestrial organic matter. Considerable work has been done to resolve the elemental composition of this meteorite. Raman spectroscopy is a very suitable technique for non-destructive rapid in situ analyses to establish the spatial distribution of carbonaceous matter. This report demonstrates that Raman cartography at a resolution of 1 microm2 can be performed. Two-dimensional distribution of graphitised carbon, amorphous carbonaceous matter and minerals were obtained on 100 microm2 maps. Maps of the surface of native stones and of a powdered sample are compared. Graphitic and amorphous carbonaceous domains are found to be highly overlapping in all tested areas at the surface of the meteorite and in its interior as well. Pyroxene, olivine and iron oxide grains are embedded into this mixed carbonaceous material. The results show that every mineral grain with a size of less than a few microm2 is encased in a thin carbonaceous matrix, which accounts for only 2.5 wt.%. This interstitial matter sticks together isolated mineral crystallites or concretions, including only very few individualized graphitised grains. Grinding separates the mineral particles but most of them retain their carbonaceous coating. This Raman study complements recent findings deduced from other spatial analyses performed by microprobe laser-desorption laser-ionisation mass spectrometry (microL2MS), transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM).  相似文献   

19.
All experimental observations of the uptake of the four title compounds on calcite are consistent with the presence of a reactive bifunctional surface intermediate Ca(OH)(HCO3) that has been proposed in the literature. The uptake of CO2 and SO2 occurs on specific adsorption sites of crystalline CaCO3(s) rather than by dissolution in adsorbed water, H2O(ads). SO2 primarily interacts with the bicarbonate moiety whereas CO2, HNO3 and HCl all react first with the hydroxyl group of the surface intermediate. Subsequently, the latter two react with the bicarbonate group to presumably form Ca(NO3)2 and CaCl2.2H2O. The effective equilibrium constant of the interaction of CO2 with calcite in the presence of H2O(ads) is kappa = deltaCO2/(H2O(ads)[CO2]) = 1.62 x 10(3) bar(-1), where CO2 is the quantity of CO2 adsorbed on CaCO3. The reaction mechanism involves a weakly bound precursor species that is reversibly adsorbed and undergoes rate-controlling concurrent reactions with both functionalities of the surface intermediate. The initial uptake coefficients gamma0 on calcite powder depend on the abundance of H2O(ads) under the present experimental conditions and are on the order of 10(-4) for CO2 and 0.1 for SO2, HNO3 and HCl, with gamma(ss) being significantly smaller than gamma0 for HNO3 and HCl, thus indicating partial saturation of the uptake. At 33% relative humidity and 300 K there are 3.5 layers of H2O adsorbed on calcite that reduce to a fraction of a monolayer of weakly and strongly bound water upon pumping and/or heating.  相似文献   

20.
We present herein the VLS growth of SWNTs from oxo-hexacarboxylate-triron precursors, [Fe(3)O(O(2)CCH(3))(6)(EtOH)(3)] and [Fe(3)O(O(2)CCH(2)OMe)(6)(H(2)O)(3)][FeCl(4)], on spin-on-glass surfaces, using C(2)H(4)/H(2) (750 degrees C) and CH(4)/H(2) (800 and 900 degrees C) growth conditions. The SWNTs have been characterized by AFM, SEM and Raman spectroscopy. The characteristics of the SWNTs are found to be independent of the identity of the precursor complex or the solvent from which it is spin-coated. The as grown SWNTs show a low level of side-wall defects and have an average diameter of 1.2-1.4 nm with a narrow distribution of diameters. At 750 and 800 degrees C the SWNTs are grown with a range of lengths (300 nm-9 microm), but at 900 degrees C only the longer SWNTs are observed (6-8 microm). The yield of SWNTs per unit area of catalyst nanoparticle decreases with the growth temperature. We have demonstrated that spin coating of molecular precursors allows for the formation of catalyst nanoparticles suitable for growth of SWNTs with a high degree of uniformity in the diameter, without the formation of preformed clusters of a set diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号