首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nondestructive and destructive methods have been used to establish a series of elastic and strength characteristics of the compact bone tissue in six zones of the cross section of the diaphysis of the human tibia. The quantity of five characteristic biochemical substances present in each zone has been determined. The experiments show that, from the standpoint of continuum mechanics, the compact bone tissue is an orthotropic material and that the bone is nonhomogeneous with respect to biochemical composition. The rank correlation coefficients between the mechanical characteristics and the biochemical concentrations are subjected to a detailed analysis. The important effect of the common glycoproteins on the elastic and strength properties of bone tissue in tension is established.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 1, pp. 138–145, January–February, 1973.  相似文献   

2.
The theoretical strength of various ideally oriented synthetic fibers was calculated. The calculation was based on an assumption that the rupture of polymers involves simultaneous breaking of molecular chains and pulling asunder the chain ends. The temperature-time dependence of the strength of fibers was analyzed and the maximum attainable strength of fibers of various kinds was calculated to show that it is 2–5 times higher than that recorded in practice. The main causes of the difference between the attainable and attained levels of strength are associated with imperfections of the supermolecular structure and an insufficient degree of orientation of materials of this kind. The principal means of obtaining high strength levels of synthetic fibers were discussed.Mekhanika Polimerov, Vol. 2, no. 6, pp. 845–856, 1966  相似文献   

3.
Conditions for the fracture of a unidirectionally reinforced plate under uniaxial tension at an arbitrary angle to the direction of reinforcement are proposed. The fracture conditions are applicable to the case where the adhesion strength between the bond and reinforcement is greater than the strength of the polymer bond. The strength of the polymer bond in the volume stressed state is determined by an energy criterion.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, Vol. 9, No. 3, pp. 482–486 May–June, 1973.  相似文献   

4.
Conclusion The above studies show that the strength of unidirectional FCP's in uniaxial and biaxial tension is largely determined by the strength of the bond between the fibers and matrix and the internal geometry of the reinforcement. This dependence is particularly significant when the FCP product is loaded across as well as along the fibers. Impulsive loading as a method of making FCP's makes it possible to broadly vary the strength of the fiber-matrix interfaces. The unidirectional FCP's and tubular products of FCP's obtained by this method have a high strength under different types of loading, and this strength can be predicted by calculation.Presented at the Sixth All-Union Conference on the Mechanics of Polymer and Composite Materials (Riga, November, 1986).Translated from Mekhanika Kompozitnykh Materiaiov, No. 6, pp. 1033–1038, November–December, 1986.  相似文献   

5.
The effect of bond strength on over-all tensile strength has been investigated in relation to two-layer materials consisting of cellophane film cut in the longitudinal and transverse directions and bonded with polyisobutylene. It is shown that there is a linear correlation between the bond strength and the combination hardening effect. The breaking stress of two-layer materials is higher than that of the individual films. A possible explanation of this effect is proposed.Mekhanika Polimerov, Vol. 3, No. 1, pp. 89–94, 1967  相似文献   

6.
This paper discusses the variation in the deformation and strength properties of compact bone tissue during torsion in various zones of the cross section of human tibia. A correlation has been found between the specific energy of deformation consumed during the loading process and the level of stress attained. The degree of correlation between the deformation and strength properties of the bone tissue has been studied as a function of the concentration of certain biochemical substances in its composition.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No.5, pp. 911–918, September–October, 1973.  相似文献   

7.
Failure conditions are proposed for an orthogonally reinforced plastic in uniaxial tension at an arbitrary angle to the directions of reinforcement. The failure conditions are formulated for the case when the strength of the bond between the resin and the reinforcement is greater than the strength of the resin. The strength of the resin, which is in a volume state of stress, is determined by an energy criterion.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 629–633, July–August, 1973.  相似文献   

8.
The relationship between adhesion and bond strength in thin fiber-polymer matrix systems was studied. Adhesive interaction in composite materials was analyzed within the scope of thermodynamic and molecular-kinetic theories of adhesion. Methods based on wetting are shown to give poor estimation of the work of adhesion in fiber-polymer systems, which is due to their low sensibility to donor-acceptor interactions taking place at the interface. Important information about the acidity and basicity of contacting surfaces can be obtained by using inverse gas chromatography to investigate the thermodynamics of adsorption. The calculation of the work of adhesion including acid-base interactions shows the best agreement with the bond strength in the same systems. The local (ultimate) interfacial shear strength is proposed to characterize the quality of fiber-matrix bonding. Analysis of the relationship between the work of adhesion and adhesive pressure for various systems allowed us to differentiate the dispersive and acid-base components of the local bond strength as well as to estimate distances characteristic of these twoTypes of interaction. For dispersive forces, our estimation gives 7–8Å, i.e., of an order of magnitude of the center-to-center distance for van der Waals interactions. At the same time, the acid-baseInteractions have a characteristic range of 4–5Å and can be attributed to hydrogen bonding. The agreement between the calculated distances and literature data is evidence for the applicability of the proposed method to the analysis of the adhesive interaction in fibrous polymer composites.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 4, pp. 431–446, July–August, 1998.  相似文献   

9.
The penetration strength of trabecular bone tissue of human lumbar vertebrae was determined in vitro by the osteopenetrometer. The tests were performed in the frontal, middle, and back third of the vertebra body lateral side, in the upper and lower terminal plates, and in the processus spinosus in three vertebrae of the age group 1 (19–25 years), four vertebrae of the group 2 (40–60 years), and four of the group 3 (61–75 years). The data obtained show that the penetration of strength of the human lumbar vertebrae diminishes with age nonuniformly: the most expressed decrease appears in the frontal and middle parts of the lateral side and in the processus spinosus, but very little change appears under the terminal plates. The significant correlation between the penetration strength in the processus spinosus and in the vertebrae body could be useful for diagnostics of the vertebra state in vivo. According to the measured penetration strength in the processus spinosus, it is possible to indirectly estimate its value in the vertebra body.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Latvian Medical Academy, Riga, Latvia. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 4, pp. 564–573, July–August, 1996.  相似文献   

10.
The values of all the lateral strain coefficients of the compact bone tissue of the human tibia have been experimentally determined. The variation of these coefficients in six zones of the cross section have been studied at various stress levels, including the ultimate strengths in the corresponding directions. It has been established that the bone tissue possesses orthotropy of the elastic properties. The change in the volume of the bone tissue during deformation has been studied. The bulk moduli for both uniaxial and hydrostatic loading have been determined. A bulk deformation parameter characterizing the strain energy expended in producing a volume change of 100% is introduced. The coefficients of the rank correlation between the lateral strain coefficients and bulk moduli, on the one hand, and the concentrations of a number of biochemical substances found in bone tissue, on the other, are analyzed.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 1089–1100, November–December, 1973.  相似文献   

11.
The variation of the strength of specimens of human tibial compact bone tissue with age has been investigated. It is shown that the torsional strength i * increases sharply in childhood, reaches a maximum at age 25–35, and then gradually falls. There is a correlation between i * and the porosity of the bone tissue. The mode of fracture of the bone tissue has been studied in relation to its orientation with respect to the principal axes of anisotropy.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 493–503, May–June, 1975.  相似文献   

12.
A new method of determining the shear strength of the metal-plastic adhesion bond is considered. Experimental data on its dependence on load and indenter dimensions are presented for various types of plastics under different conditions.State Scientific Research Institute of Machine Science, Moscow. Translated from Mekhanika Polimerov, No. 5, pp. 854–858, September–October, 1970.  相似文献   

13.
On the basis of the principle of ellipsometry and, moreover, the method of pyrolitic decomposition of the polymer with subsequent chromatographic analysis of the products of pyrolysis, a procedure has been developed for experimentally determining the thickness of the ultrathin layer of polymer that remains on the metal after failure of a polyethylene-steel adhesion bond. The nature of the relationship between the thickness of the residual polymer layer (200–800 Å) and the strength of the adhesion bond is established. It is concluded that the cohesion strength and the deformation at failure of the layer of adhesive next to the more rigid and stronger boundary layer have a decisive influence on the strength of the adhesion bond.Riga Polytechnic Institute. Translated from Mekhanika Polimerov, No. 3, pp. 420–424, May–June, 1976.  相似文献   

14.
The statistical characteristics of the static strength of AG-4s entering into the equations of the strength criteria for anisotropic materials are determined. The agreement between a series of existing criteria and the test data is estimated. A theoretical estimate of the mathematical expectation and variance of the function for the criterion best adapted to the material in question is obtained on the basis of the method of linearization of a function of several random arguments. The theoretical and experimental data are compared.Moscow Aviation Technological Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1117–1120, November–December, 1973.  相似文献   

15.
Conclusions The x-ray diffraction results indicate the following major features for the microdeformation of bone tissue. The total deformation in the elastic region is determined by the microdeformation of the mineral bone tissue component. The large yield of the mineral component indicates its relatively low elasticity modulus. The shape of the deformation curves for both dry and moist bone tissue is a factor of the combined deformation of the mineral and organic components. While the total deformation up to fracture in dry bone tissue is determined largely by microdeformation of the crystalline mineral phase, such behavior is found for moist bone tissue only in the first segment of the curve. Deformation in the second, more curved segment of the deformation curve is a factor largely of deformation of the organic bone-tissue component.Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 530–535, May–June, 1983.  相似文献   

16.
Conclusions The above studies of two types of three-layer structural elements showed that the types have different resistances to static deformation in bending. Regardless of the materials, the use of structures which are symmetrical in regard to stiffness makes it possible to obtain a stiffness and strength for the structure which are 10–15% lower than the stiffness and strength of the external plates if the thickness of the latter does not account for more than 25% of the thickness of the structure. This finding, in turn, permits a substantial reduction in the weight of the structure by the use of a lower-density material for the internal layer. Resistance to static bending is determined mainly by the resistance of the structure to shear stresses. The mechanism of fatigue fracture differs appreciably from the fracture mechanism in static deformation. Regardless of the thickness of the structural elements, fatigue fracture for both types of structure occurs as a result of the acting normal compressive stresses. The endurance limit of the hybrid structure is determined by the fatigue resistance of the external layers, and its value is nearly equal to the resistance of the pure materials.Presented at the Sixth All-Union Conference on the Mechanics of Polymer and Composite Materials (Riga, November, 1986).Translated from Mekhanika Kompozitnykh Materialov, No. 5, pp. 878–882, September–October, 1986.  相似文献   

17.
The effect of hydrogen bond rupture on the process of destruction of the starting crystallite structure of polyvinyl alcohol and copolymers of vinyl alcohol and N-vinylpyrrolidone and -vinylcaprolactam has been investigated. The differential spectrum method is used to establish the frequency (3200 cm–1) of the band corresponding to the vibrations of the bound hydroxyl groups; the temperature dependence of the optical density of the 3200 cm–1 band has been recorded. The strength of the starting structure is calculated from the stress-strain diagram and its temperature dependence is plotted. It is concluded that the strength of the starting structure is chiefly determined by the presence of hydrogen bonds between the polymer macromolecules.Leningrad Kirov Institute of Textile and Light Industry. Translated from Mekhanika Polimerov, No. 2, pp. 327–329, March–April, 1971.  相似文献   

18.
The elastic, deformation, and strength properties of six different zones of the cross section of the diaphysis of the human tibia have been experimentally investigated. It is shown that when the compact bone tissue is stressed in tension all these properties differ significantly from zone to zone. The greatest values of the initial modulus of elasticity and the tensile strength correspond to the frontal-outer zones of the bone. The nonlinear stress-strain curves are analytically approximated. The secant and tangent moduli are shown to depend on the stress intensity.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 940–946, September–October, 1971.  相似文献   

19.
From the measurements of the main elements of the microstructure of compact bone material, it is concluded that the theoretical model of a transtropic material can be applied to bone tissue. This conclusion is confirmed by the experimental data obtained on compression. The correlation connection between the ultimate strength of compact bone material and the elasticity modulus has been found. It is shown that the anisotropy of the compact material is satisfactorily described by the tensor formula.Scientific-Research Institute of Medical Radiology, Academy of Medical Sciences of the USSR, Obninsk. S. M. Kirov Leningrad Order of Lenin Wood Technology Academy. Translated from Mekhanika Polimerov, No. 4, pp. 711–716, July–August, 1972.  相似文献   

20.
Conclusions Residual stress formation in stiffened composite shells has a nonmonotonic character determined by the fabrication technology, by the structural geometry and by the relations between the thermophysical and mechanical characteristics of the materials of which the individual elements are composed. For a given temperature regime a residual stress distribution favorable with respect to strength can be obtained by using auxiliary devices with specially selected properties.Moscow Power-Engineering Institute. Translated from Mekhanika Polimerov, No. 1, pp. 34–39, January–February, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号