首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.
Graphical abstract PdNi nanoalloys confined in mesoporous carbon exhibiting magnetic properties dependent on thealloys composition and size were synthesized by a fast microwave approach
  相似文献   

2.
A novel core–shell nanocomposite Ni–Ca@mSiO2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.
Graphical abstract A magnetic core–shell nanocomposite Ni–Ca@mSiO2 exhibited good activity, selectivity, and reusability in benzophenone selective hydrogenation.
  相似文献   

3.
A protocol is described for an efficient transamidation of amides with amines in the presence of mesoporous silica nanoparticles (MSNs). The latter is used as a green, heterogeneous, and recyclable nanocatalyst, under solvent-free conditions. Following this protocol, a wide range of aromatic, aliphatic, and cyclic/acyclic primary or secondary amines are used in synthesis of a series of amides with good to excellent yields (65–96%). MSNs is characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), small-angle powder X-ray diffraction (XRD), nitrogen adsorption-desorption analysis, and FT-IR spectroscopy. The metal/solvent-free condition, easy work up, high purity of the products, recyclability, and environmentally-friendly nature of the catalyst are the attractive features of this methodology.
Graphical abstract An efficient transamidation of carboxamides was achieved via the use of mesoporous nanoparticles as green nanocatalyst. The metal/solvent-free condition, easy work up, high purity of the products, recyclability, and environmentally-friendly nature of the catalyst are the attractive features of this methodology.
  相似文献   

4.
5-Sulfosalicylic acid (SFSA) functionalized mesoporous silica nanocomposites (SBA/APTS/SFSA) were synthesized by post grafting technique for selective debenzylation of 1-benzyloxy-4-methoxy benzene. The uniform incorporation of SFSA inside the mesoporous SBA-15 framework was confirmed by standard characterization techniques (PXRD, adsorption studies, FT-IR, etc.). Total surface area, pore size and pore volume of the SBA/APTS/SFSA catalysts decreased with increase in the concentration of SFSA confirming the uniform insertion of SFSA into mesoporous SBA-15 matrix. Catalytic activity studies showed highest conversion and selectivity of the desired product on SBA/APTS/SFSA catalyst compared to homogeneous SFSA and other solid support (Al2O3 and SiO2). All the reaction parameters such as reaction time, reaction temperature and catalyst weight were optimized under environmental friendly conditions. Finally, the possible mechanism of the reaction was explained.
Graphical abstract ?
  相似文献   

5.
We report a novel method for formation of self-organized single-standing carbon nanotubes by customizing a plasma-based process. The growth of carbon nanotubes by plasma-enhanced chemical vapor deposition provides suitable grounds to utilize plasma–solid interactions for nanopatterning. The bulk plasma is utilized to fabricate carbon nanotubes on the prepatterned Ni catalyst which in turn can confine the plasma to the growth region. The plasma localization leads to a dielectrophoretic force exerted on Ni atoms and can be engineered in order to grow a specific pattern of self-organized single-standing carbon nanotubes. Numerical simulations based on the plasma localization and dielectrophoretic force confirmed the experimental results. This method provides a simple and cost-effective approach to obtain nanopatterned arrays of carbon nanotubes which can be used for fabrication of photonic and phononic crystals, self-gated field emission-based transistors and displays.
Graphical abstract Nanopattern formation using localized plasma
  相似文献   

6.
The most important limitation for boron neutron capture therapy of cancer is the selective accumulation of boron compounds in tumor tissues in significant quantities. In this paper, we describe the possibility to use magnetic Ni/Fe nanotubes as carriers for boron delivery. Carborane derivatives containing 10 and 21 boron atoms per molecule were immobilized on Ni/Fe nanotubes by covalent and ionic interactions. Magnetic properties of NTs were investigated by Mössbauer spectroscopy. Structure, element, chemical composition, and morphology of obtained magnetic nanotubes were studied by XRD, SEM-EDA, and FTIR spectroscopy. Results indicate success immobilization of carborane derivatives on Ni/Fe nanotubes and great potential to use them as carriers for boron neutron cancer therapy of cancer.
Graphical abstract ?
  相似文献   

7.
Dendritic Pt–Cu nanoparticles were synthesized by a facile one-step method with the help of surfactant Brij58 at room temperature, and we also studied the effects of different Pt–Cu ratios on the morphology and size of nanoparticles. In addition, we further tuned the morphology of the Pt–Cu nanostructures by introducing bromide ions, eventually leading to the appearance of some tripod-like structures. Compared with dendritic Pt–Cu and commercial Pt black, these tripod-like Pt–Cu nanostructures exhibited higher electrocatalytic activity and CO tolerance for catalyzing methanol oxidation.
Graphical abstract ?
  相似文献   

8.
In this paper, the green synthesis of fluorescent carbon dots (CDs) via one-step hydrothermal treatment of cornstalk was investigated. This approach is facile, economical, and effective. The obtained CDs with an average diameter of 5.2 nm possess many excellent properties such as emitting blue fluorescence under UV light (365 nm), high monodispersity, good stability, excellent water dispersibility, and absolute quantum yield of 7.6%. Then, these CDs were used as sensing probes for the detection of Fe2+ and H2O2 with detection limits as low as 0.18 and 0.21 μM, respectively. This sensing platform shows advantages such as high selectivity, good precision, rapid operation, and avoiding the precipitation of iron oxyhydroxides.
Graphical abstract ?
  相似文献   

9.
A novel approach for the preparation of molybdenum carbide by solution combustion synthesis (SCS) combined with subsequent programmed heating of SCS products was proposed using ammonium heptamolybdate (AHM) and organic reducers (glycine, alanine, glucose, etc.) as precursors. It has been shown that SCS temperature and composition of the products are governed by changing the AHM-organic fuel ratio, the type of organic reducer, the rate of gaseous oxygen flow, and quantity of ammonium nitrate. A solution combustion synthesis method allowed to produce molybdenum carbide at the first stage only from the AHM-glycine system. In the other studied systems, carburization process was stimulated by the subsequent programmed heating of the SCS product, sometimes with addition of a certain amount of carbon source up to 1200 °C with Vh?=?20–100°min?1. The catalytic activity and selectivity of Mo2C was tested on the model reaction of isopropyl alcohol conversion. A new phenomenon showing the temperature influence on the selectivity of either propylene or acetone formation was revealed.
Graphical abstract ?
  相似文献   

10.
Metal nanoparticles have been combined with magnet metal–organic frameworks (MOFs) to afford new materials that demonstrate an efficient catalytic degradation, high stability, and excellent reusability in areas of catalysis because of their exceptionally high surface areas and structural diversity. Magnetic M x O y @N-C (M = Fe, Co, Mn) nanocrystals were formed on nitrogen-doped carbon surface by using 8-hydroxyquinoline as a C/N precursor. The Co@N-C, MnO@N-C, and Fe/Fe2O3@N-C catalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption, and X-ray photoelectron spectroscopy (XPS). The catalytic performances of catalysts were thoroughly investigated in the oxidation of aniline solution based on sulfate radicals (SO4 ?.) toward Fenton-like reaction. Magnetic M x O y @N-C exhibits an unexpectedly high catalytic activity in the degradation of aniline in water. A high magnetic M x O y @N-C catalytic activity was observed after the evaluation by aniline degradation in water. Aniline degradation was found to follow the first-order kinetics, and as a result, various metals significantly affected the structures and performances of the catalysts, and their catalytic activity followed the order of Co > Mn > Fe. The nanoparticles displayed good magnetic separation under the magnetic field.
Graphical Abstract ?
  相似文献   

11.
Nano-octahedra of cobalt ferrite Co x Fe3???xO4 (1?≤?x?<?2), with a broad size distribution around 15–20 nm, were synthesized by a hydrothermal method using nitrates as precursors. For the first time, single-phased nano-octahedra of cobalt-rich ferrite Co x Fe3???xO4 (x?=?1.5) were synthesized. The nano-octahedra are crystallized in a normal spinel structure, with tetrahedral sites occupied by Co2+. This specific octahedral shape was obtained with anionic, cationic, and nonionic surfactants. The nature of the surfactant influenced the chemical composition of the powder and the size of the nano-octahedra. The {100} truncation of the octahedra is more pronounced for the small particles. For the first time, single-phased nanoparticles with as much as x?=?1.8 cobalt were synthesized with ethylene glycol as solvent. These nanoparticles, around 8 nm in size, have no specific shape and possess a lacunar spinel structure similar to maghemite. The samples were characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy.
Graphical abstract ?
  相似文献   

12.
Novel feather duster-like nickel sulfide (NiS) @ molybdenum sulfide (MoS2) with hierarchical array structure is synthesized via a simple one-step hydrothermal method, in which a major structure of rod-like NiS in the center and a secondary structure of MoS2 nanosheets with a thickness of about 15–55 nm on the surface. The feather duster-like NiS@MoS2 is employed as the counter electrode (CE) material for the dye-sensitized solar cell (DSSC), which exhibits superior electrocatalytic activity due to its feather duster-like hierarchical array structure can not only support the fast electron transfer and electrolyte diffusion channels, but also can provide high specific surface area (238.19 m2 g?1) with abundant active catalytic sites and large electron injection efficiency from CE to electrolyte. The DSSC based on the NiS@MoS2 CE achieves a competitive photoelectric conversion efficiency of 8.58%, which is higher than that of the NiS (7.13%), MoS2 (7.33%), and Pt (8.16%) CEs under the same conditions.
Graphical abstract Novel feather duster-like NiS@MoS2 hierarchical structure array with superior electrocatalytic activity was fabricated by a simple one-step hydrothermal method.
  相似文献   

13.
Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered “wormhole” (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host–guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.
Graphical abstract Comparison of the release of doxorubicin from WO and iron oxide@WO particles into PBS
  相似文献   

14.
Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups.
Graphical abstract
  相似文献   

15.
The mesoporous biosilica with unique 3D hierarchy in/organic functional groups is attractive material in terms of interfacial phenomena, and its high biocompatibility accelerates development in biomedical devices. In addition, their benefits also play a fundamental role in antimicrobial assessment. We hypothesize that the Diadesmis gallica biosilica surface acts as a biotemplate for AgCl and Au nanoparticle (NP) biosynthesis. Moreover, it exhibits antibacterial action human pathogenic bacteria. Nanoparticle biosynthesis was performed via a pure environmental-friendly, static, bottom-up in vitro regime. Minimal inhibitory concentrations evaluated systems with bionanocomposites for antibacterial efficiency in temporal time-dose-dependency. TEM and XRD depicts a biosilica “local sphere” which affects formation, stabilization and encapsulation of crystalline Au (9–27 nm) and AgCl (3–51 nm) NPs in one simple step. FTIR analysis reveals various functional in/organic groups, including Si–OH and polyamides. While both metal-bionanoparticles have analogical spherical shape with determined aggregation, ICP-AES analysis determined more effective 5.29 wt% Au NP formation than 1 wt% AgCl NPs. MIC analysis confirms that bionanocomposite with AgCl by concentration 0.014 mg/mL has the most effective antibacterial system for gram-positive and gram-negative bacteria strains. Although dual effect of Au/AgCl NP bionanocomposite has almost analogical influence on gram-positive bacteria, the synergic-antagonistic effect is irrelevant in this instance.
Graphical abstract ?
  相似文献   

16.
The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe3O4 magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100–200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.
Graphical abstract SEM images of EDTA-coated magnetic clusters (MCs) and the HUVEC viability at different MC doses
  相似文献   

17.
A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt.
Graphical abstract A nitrogen-doped reduced graphene oxide nanosheet was synthesized by a simple hydrothermal method, which is a promising counter electrode material to replace noble metal Pt.
  相似文献   

18.
Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1–10 wt.%) of Ag loading followed by calcination at 350 °C under H2 led to change in the morphology of Ag nanoparticles from nanospheres (~7–8 nm) to nanorods (aspect ratio ~12–30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m2/g of SBA-15 to 385 m2/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.
Graphical abstract This paper demonstrates the spontaneous formation of uniformly dispersed Ag nanospecies of various morphologies (nanospheres, size ~7–8 nm and nanorods, aspect ratio ~12–30 nm), both within as well as on the surface of the mesoporous SBA-15, as a function of increased Ag loading. Surface structural and other physiochemical properties of Ag/m-SBA-15 nanocomposites were considerably influenced w.r.t change in Ag loading. Ag/m-SBA-15 nanocomposites with 4 wt.% Ag loading exhibited the highest selectivity (87 %) for the selective reduction of p-dinitrobenzene to p-nitroaniline and 100 % selectivity for p-nitrophenol to p-aminophenol and p-nitroacetophenone to p-aminoacetophenone, respectively.
  相似文献   

19.
Layered zinc-based metal-organic framework ([Zn(4,4′-bpy)(tfbdc)(H2O)2], Zn-LMOF) nanosheets were synthesized by a facile hydrothermal method (4,4′-bpy = 4,4′-bipyridine, H2tfbdc = tetrafluoroterephthalic acid). The materials were characterized by IR spectrum, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, transmission electron microscope (TEM), scanning electron microscope (SEM), and the Brunauer–Emmett–Teller (BET) surface. When the Zn-LMOF nanosheets with the thickness of about 24 ± 8 nm were used as an anode material of lithium-ion batteries, not only the Zn-LMOF electrode shows a high reversible capacity, retaining 623 mAh g?1 after 100 cycles at a current density of 50 mA g?1 but also exhibits an excellent cyclic stability and a higher rate performance.
Graphical abstract Zinc-based layered metal-organic framework ([Zn(4,4′-bpy)(tfbdc)(H2O)2], Zn-LMOF) nanosheets have been synthesized, displaying a high capacity as anode materials for lithium-ion batteries.
  相似文献   

20.
Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-С nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the СО2 atmosphere, dry reforming takes place to give syngas with the СО/Н2 ratio of ~?0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90–94%.
Graphical abstract The microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@γ-Fe-С nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号