首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterization of samples of cadmium selenide quantum dots (CdSe) QDs dissolved in toluene colloidal solutions at a concentration of 1.4 mg/ml was carried out through UV–Vis absorption and photoluminescence (PL) spectroscopy. The size-dependent absorption and red-shifted PL emission peak wavelengths could be tuned between 510–576 and 545–606 nm respectively. Optical absorption spectral measurements yielded CdSe QDs having diameters about ~ 2.44–3.69 nm with energy gaps 2.32–2.08 eV which are higher than the bulk CdSe (1.74 eV) reminiscent of quantum confinement. This is found to be in good agreement with the semi-empirical pseudopotential model. In addition, the first excitonic absorption transition 1S(e)1S3/2(h) oscillator strength and the corresponding fluorescence radiative decay time of CdSe QDs are assessed using relevant Einstein relations for absorption and emission in a two-level system. The elaborated calculations would anticipate that the transition oscillator scale with the CdSe QD radius as ~ R2.54. Correspondingly, the calculated radiative decay times decrease from 56.4 to 23.2 ns which scale with CdSe QDs radius as ~ R?2.155 in fairly good agreement with experimental values reported in the literature.  相似文献   

2.
Colloidal ZnS quantum dots (QDs) are prepared by passing H2S gas through a solution of Zn(CH3COO)2 in acetonitrile. Photophysical properties are investigated using UV?CVisible and photoluminescence (PL) spectroscopy. The spectrum shows an absorption shoulder at 271 nm representing a band gap of 4.6 eV. The doping of ZnS QDs with Co, Cu, and a mixture of Co and Cu not only increased the band gap to 0.2 eV but also turns these otherwise colorless QDs to blue in color due to cobalt, and green due to Cu. The observed emission in the visible region suggests that the dopants may have induced additional excited states to the ZnS QDs. This absorbance in the visible region can be utilized in the optoelectronic applications.  相似文献   

3.
In this study, a selective method for the determination of atropine in pharmaceutical formulations was proposed. L-cysteine capped Mn-doped ZnS quantum dots (QDs) were prepared in an in-situ method using sodium thiosulfate precursor and characterized by spectrofluorometer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and X-ray diffractometer (XRD). Dopamine hydrochloride was used as a precursor for preparation of poly dopamine-coated molecularly imprinted Mn-doped ZnS quantum dots. Finally, these prepared molecularly imprinted Mn-doped ZnS quantum dots were used for determination of atropine in pharmaceutical formulations. The obtained linear range for determination of atropine was in the range of 2 × 10?8 – 7 × 10?6 M, with a correlation coefficient (R2) of 0.9889; and the detection limit (S/N = 3) was 3.2 nM.  相似文献   

4.
Temperature-dependent photoluminescence (PL) spectroscopy of CuInS2 core and CuInS2/ZnS core–shell quantum dots (QDs) was studied for understanding the influence of a ZnS shell on the PL mechanism. The PL quantum yield and lifetime of CuInS2 core QDs were significantly enhanced after the QD surface was coated with the ZnS shell. The temperature dependences of the PL energy, linewidth, and intensity for the core and core–shell QDs were studied in the temperature range from 92 to 287 K. The temperature-dependent shifts of 98 meV and 35 meV for the PL energies of the QDs were much larger than those of the excitons in their bulk semiconductors. It was surprisingly found that the core and core–shell QDs exhibited a similar temperature dependence of the PL intensity. The PL in the CuInS2/ZnS core–shell QDs was suggested to originate from recombination of many kinds of defect-related emission centers in the interior of the cores.  相似文献   

5.
Kun Zhong 《光谱学快报》2013,46(3):160-164
ABSTRACT

ZnO quantum dots (QDs) embedded in SiO2 matrix are fabricated by ion implantation and annealing treatment methods. When the Zn-doping dose is (2, 3, 5, and 7) × 1016 cm?2, the size of quantum dots is in the range of ~4–10 nm in diameter according to the XRD and HR-TEM results. Ultraviolet and green light emissions from the specimen are obtained at room temperature. With the increase of the Zn-doping dose, the PL peak in the ultraviolet region red shifts from 3.32 to 3.10 eV. This PL peak is related to the size of ZnO QDs, which is ascribed to the free exciton recombination in QDs. The green light emissions centered at 2.43 and 2.25 eV are independent of the Zn-doping dose and annealing temperature, which are attributed to the deep-level defect and the small peroxy radical (SPR) defect, respectively.  相似文献   

6.
MPA stabilized CdSe/ZnS NCs was applied as a fluorescent probe for the sensitive detection of Pb2+ in water. The microreaction was demonstrated as a facile method for the reproducible synthesis of CdSe/ZnS NCs with a high quantum yield. The good stability of CdSe/ZnS NCs was proved by the significant maintaining of photoluminescent (PL) after the ligand exchange with MPA, and was further demonstrated by the excellent PL property in water solution with various pH values. The cation exchange of Zn with Pb led to the linear quenching of PL with the concentration of Pb2+, which provided as an opportunity to apply MPA stabilized CdSe/ZnS NCs as fluorescent probes for Pb2+. A facile method by adjustment of QDs concentration was demonstrated as a suitable way to approach different detection limits. The detection limits of 0.03 and 3.3 μM were achieved by setting QDs solutions with the absorbance of the first exciton peak as 0.05 and 0.15, respectively.  相似文献   

7.
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.  相似文献   

8.
The change in the intensity of the photoluminescence (PL) spectra of nematic liquid crystal (NLC) composites as a function of the concentration of CdSe/ZnS semiconductor quantum dots (QDs) and TiO2 and ZrO2 nanoparticles ~5 nm in diameter has been investigated. It is shown that the PL-quenching intensity in composites with CdSe/ZnS QDs exceeds that in composites with TiO2 and ZrO2 nanoparticles. The lowfrequency spectra of these composites with a concentration of 0.1 wt %, recorded in the range of 102–103 Hz, and the content of mobile ions in them have been investigated. It is found that the dielectric loss in the composite with CdSe/ZnS QDs is much higher and the content of mobile ions is larger by a factor of 3 than in the composites with TiO2 and ZrO2 nanoparticles. It is shown that an increase in the CdSe/ZnS QD concentration in NLC composites leads to an increase in the dielectric loss and a decrease in the PL intensity. Possible mechanisms of the interaction between NLC molecules and CdSe/ZnS QDs are discussed.  相似文献   

9.
A sensitive phosphorescent sensor based on riboflavin (RF)-modulated mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs) was developed and utilized as room-temperature phosphorescence (RTP) sensor for DNA detection. The RTP of the MPA-capped Mn-doped ZnS QDs was stored via photoinduced electron transfer by RF, and formed an electrochemically nonactive QDs/RF nanohybrids through electrostatic attraction. In the presence of DNA, RF could bind with DNA, which has a double helical structure, via electrostatic interaction and intercalation. RF can be removed from the surface of the QDs, thus releasing the RTP of the QDs. On the basis of this principle, an RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 15 μg mL?1, the relative standard deviation was 1.9 %, and the method recovery ranged from 97 % to 103 %. The proposed method was applied to biological fluids, in which satisfactory results were obtained.  相似文献   

10.
InAs quantum dots (QDs) were successfully formed in single-crystalline Si by sequential ion implantation and subsequent milliseconds range flash lamp annealing (FLA). Samples were characterized by μ-Raman spectroscopy, Rutherford Backscattering Spectrometry (RBS) high-resolution transmission electron microscopy (HRTEM) and low temperature photoluminescence (PL). The Raman spectrum shows two peaks at 215 and 235 cm?1 corresponding to the transverse optical (TO) and longitudinal optical (LO) InAs phonon modes, respectively. The PL band at around 1.3 μm originates from the InAs QDs with an average diameter 7.5±0.5 nm and corresponds to the increased band gap energy due to the strong quantum confinement size effect. The FLA of 20 ms is sufficient for InAs QDs formation. It also prevents the out-diffusion of implanted elements. Moreover, the silicon layer amorphized during ion implantation is recrystallized by solid-phase epitaxial regrowth during FLA.  相似文献   

11.
ZnS semiconductor nanoparticles with average size of 3.4 nm were prepared in situ in chitosan film. TEM, UV–vis spectra and PL spectra show the ZnS nanoparticles in chitosan template were monodispersed and well passivated. The two-photon absorption coefficient (β) of the chitosan–ZnS quantum dots (QDs) nanocomposite film was obtained to be 2.29×102 cm/Gw from a standard Z-scan setup with femtosecond laser pusles at 790 nm wavelength. Results show the novel biomacromolecule/QDs nanocomposite film has large third-order optical nonlinear absorption, the mechanism responsible for which was discussed.  相似文献   

12.
Shuping Zhang 《Optik》2010,121(4):312-316
The photoluminescence (PL) properties of the guest-host films, using CdTeS/ZnS core shell quantum dots (QDs) as the guest and organic small-molecule material Alq3 as the host, are studied by steady-state and time-resolved PL spectroscopy. Both the relative intensity and the PL lifetime are intensively dependent on the weight ratio of Alq3 and CdTeS/ZnS QDs. The detailed analysis provides clear evidence for a Förster energy transfer from Alq3 host to QDs guest, based on the nonradiative resonant transfer mechanism. The results are relevant to the application of hybrid organic/inorganic systems to OLEDs.  相似文献   

13.
In comparison with conventional organic dyes, quantum dots (QDs) have unique optical and electronic properties, which provide QDs with a wide scope of prospective application in biology and biomedicine. However, the toxicity of QDs and the fluorescence intensity of labeled bacteria must precede their application in bacterial imaging and tracing in vivo. Here, we show that treatment with CaCl2 significantly improved bacterial labeling efficiency of CdSe/ZnS QDs with the CdSe core size of ~3.1 nm (relative fluorescence unit (RFU) value and ratio of fluorescent E. coli) with rising CdSe/ZnS QDs concentration in a concentration-dependent manner. At 12.5 nmol/L CdSe/ZnS QDs concentration, labeled Escherichia coli (E. coli) DH5α appeared as short rod-shaped and luminescent with normal size, and the survival rate and ultrastructure did not change in comparison to the control. But the ratio of fluorescent bacteria and RFU were very low. However, the survival rate of transformed E. coli was significantly inhibited by high CdSe/ZnS QDs concentrations (≥25 nmol/L). Moreover, internalization of CdSe/ZnS QDs resulted in ultrastructure damage of transformed E. coli in a concentration-dependent manner (≥25 nmol/L). Therefore, CdSe/ZnS QDs may not suitable for tracing of bacteria in vivo. Moreover, our study also revealed that colony-forming capability assay and transmission electron microscopy could be used to comprehensively evaluate the toxicity of QDs on labeled bacteria. Our findings do provide a new direction toward the improvement and modification of QDs for use in imaging and tracing studies in vivo.  相似文献   

14.
Temperature-dependent photoluminescence (PL) measurements were carried out ZnSe/ZnS quantum dots (QDs) grown with post-growth interruption under a dimethylzinc (DMZn) flow. The PL spectra showed sigmoidal peak shifts and V-shaped full width at half maximum (FWHM) variations with increasing temperature, which strongly suggest that the QD structure of ZnSe/ZnS is quite similar to that of other material systems grown in the Stranski–Krastanov mode. Apparent differences are revealed as a consequence of DMZn treatment: (i) the PL spectra of ZnSe/ZnS QDs showed peaks at higher energies and persisted up to 300 K, and(ii) the minimum points of the V-shaped FWHM appear at a higher temperature compared to H2-purged ZnSe/ZnS QDs. Experimental results demonstrate the enhancement of localization energy.  相似文献   

15.
The paper presents the original study of photoluminescence (PL) and Raman scattering spectra of core–shell CdSe/ZnS quantum dots (QDs) covered by the amine-derivatized polyethylene glycol (PEG) with luminescence interface states. First commercially available CdSe/ZnS QDs with emission at 640 nm (1.94 eV) covered by PEG polymer have been studied in nonconjugated states. PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in a CdSe core and to the hot electron–hole recombination via high energy luminescence states. The study of high energy PL bands in QDs at different temperatures has shown that these PL bands are related to luminescence interface states at the CdSe/ZnS or ZnS/polymer interface. Then CdSe/ZnS QDs have been conjugated with biomolecules—the Osteopontin antibodies. It is revealed that the PL spectrum of bioconjugated QDs changed essentially with decreasing hot electron–hole recombination flow via luminescence interface states. It is shown that the QD bioconjugation process to Osteopontin antibodies is complex and includes the covalent and electrostatic interactions between them. The variation of PL spectra due to the bioconjugation is explained on the basis of electrostatic interaction between the QDs and biomolecule dipoles that stimulates re-charging QD interface states. The study of Raman scattering of bioconjugated CdSe/ZnS QDs has confirmed that the antibody molecules have the electric dipoles. It is shown that CdSe/ZnS QDs with luminescence interface states are promising for the study of bioconjugation effects with specific antibodies and can be a powerful technique in biology and medicine.  相似文献   

16.
Particular features and quenching mechanisms of exciton luminescence of water-soluble nanocomposites that are formed as a result of the interaction of surface charged semiconductor quantum dots (QDs) CdSe/ZnS (d CdSe = 2.8 nm) and cationic porphyrins (H2TMPyrP4+ and ZnTMPyrP4+) have been studied theoretically and experimentally. It has been found that, in CdSe/ZnS??Porphyrin conjugates, there occurs long-range inductive resonance electronic excitation energy transfer from surface modified (with thioglycolic or mercaptoundecanoic acid) QDs to porphyrins, which is accompanied by quenching of the exciton luminescence of QDs and an increase in the fluorescence intensity of porphyrin. It has been shown that, when mercaptoundecanoic acid is used as a QD shell, the QD luminescence quenching efficiency by porphyrins follows the F?rster-Galanin theory and depends on the overlap integral between the CdSe/ZnS luminescence band and the absorption spectra of free-base porphyrin H2TMPyrP4+ and its metal complex ZnTMPyrP4+. It has been revealed that, as the QDs ? Zn-porphyrin intercenter distance decreases from 39.1 (mercaptoundecanoic acid) to 30.1), a considerable QD luminescence quenching is observed; however, the energy transfer efficiency substantially decreases, from 55% in the former case to 23% in the latter one. Based on the spectral-luminescent data and quantum-chemical calculations, it has been found that the chemical change of H2TMPyrP4+ in the structure of the complex with CdSe/ZnS QDs passivated by thioglycolic or mercaptoundecanoic acid is caused by the formation of a metal complex ZnTMPyrP4+. Based on calculations of the redox-potentials, it has been concluded that the low luminescence quantum yield of CdSe/ZnS QDs passivated by residues of mercaptocarboxylic acids S?(CH2) n COO? and its dependence on the number of CH2 groups are related to the possibility of photoinduced electron transfer from the HOMO of passivating molecules to QDs (QD* ? S?(CH2)nCOO? hole transfer). It has been shown that the quenching of the exciton luminescence of QDs in heterogeneous structures CdSe/ZnS(thioglycolic acid)??ZnTMPyrP4+, which is complementary to the energy transfer, can be caused by the photoinduced electron transfer that involves the participation of the LUMO of the ZnTMPyrP4+ molecule (QD* ? ZnTMPyrP4+).  相似文献   

17.
The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780–800 nm (1.55–1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed.The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55–1.60 eV) and the high energy PL band (1.88–1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.  相似文献   

18.
Indium phosphide (InP) quantum dots (QDs) are ideal substitutes for widely used cadmium-based QDs and have great application prospects in biological fields due to their environmentally benign properties and human safety. However, the synthesis of InP core/shell QDs with biocompatibility, high quantum yield (QY), uniform particle size, and high stability is still a challenging subject. Herein, high quality (QY up to 72%) thick shell InP/GaP/ZnS core/shell QDs (12.8 ± 1.4 nm) are synthesized using multiple injections of shell precursor and extension of shell growth time, with GaP serving as the intermediate layer and 1-octanethiol acting as the new S source. The thick shell InP/GaP/ZnS core/shell QDs still keep high QY and photostability after transfer into water. InP/GaP/ZnS core/shell QDs as fluorescence labels to establish QD-based fluorescence-linked immunosorbent assay (QD-FLISA) for quantitative detection of C-reactive protein (CRP), and a calibration curve is established between fluorescence intensity and CRP concentrations (range: 1–800 ng mL−1, correlation coefficient: R2 = 0.9992). The limit of detection is 2.9 ng mL−1, which increases twofold compared to previously reported cadmium-free QD-based immunoassays. Thus, InP/GaP/ZnS core/shell QDs as a great promise fluorescence labeling material, provide a new route for cadmium-free sensitive and specific immunoassays in biomedical fields.  相似文献   

19.
The feasibility of a high-throughput robot-assisted synthesis of complex Cu1-xAgxInSySe1-x (CAISSe) quantum dots (QDs) by spontaneous alloying of aqueous glutathione-capped Ag–In–S, Cu–In–S, Ag–In–Se, and Cu–In–Se QDs is demonstrated. Both colloidal and thin-film core CAISSe and core/shell CAISSe/ZnS QDs are produced and studied by high-throughput semiautomated photoluminescence (PL) spectroscopy. The silver-copper-mixed QDs reveal clear evidence of a band bowing effect in the PL spectra and higher average PL lifetimes compared to the counterparts containing silver or copper only. The photophysical analysis of CAISSe and CAISSe/ZnS QDs indicates a composition-dependent character of the nonradiative recombination in QDs. The rate of this process is found to be lower for mixed copper-silver-based QDs compared to Cu- or Ag-only QDs. The combination of the band bowing effect and the suppressed nonradiative recombination of CAISSe QDs is beneficial for their applications in photovoltaics and photochemistry. The synergy of high-throughput robotic synthesis and a high-throughput characterization in this study is expected to grow into a self-learning synthetic platform for the production of metal chalcogenide QDs for light-harvesting, light-sensing, and light-emitting applications.  相似文献   

20.
Time Resolved Photoluminescence (TRPL) measurements on the picosecond time scale (temporal resolution of 17 ps) on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs) were performed, to elucidate the role of intrinsic and surface states on the emission process. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak). The energy separations among the states, together with their characteristic decay times, allow us to attribute the two higher energy peaks to ±1U and ±1L bright states of the fine structure picture of spherical CdSe QDs, and the third one to surface states emission, respectively. We show that the contribution of surface emission to the PL results to be different for the two samples studied (67% in the CdSe QDs and 32% in CdSe/ZnS QDs), confirming the decisive role of the ZnS shell in the improvement of the surface passivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号