首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the π orbital tight-binding model and the multi-channel Laudauer-Büttiker formula, the combined effect of Aharonov-Bohm effect (induced by an axial magnetic field) and uniaxial strain on quantum conductance oscillations of the electronic Fabry-Perot resonators composed of armchair and metallic zigzag single-walled carbon nanotubes (SWNTs) has been studied. It is found that, for the case of the armchair SWNT, conductance oscillations near the band gap are dominated by Aharonov-Bohm effect, while the conductance oscillations in other regions are dominated by the uniaxial strains. The combined effect of Aharonov-Bohm effect and uniaxial strains on quantum conductance oscillations is not obvious. But, for the case of the metallic zigzag SWNTs, obvious single-channel transport and one or two conductance oscillations existing in two different gate voltage ranges were found by the combined effect of uniaxial strain and axial magnetic field.  相似文献   

2.
We study the transport properties of a Z-shaped graphene nanoribbon (GNR). It is found that the quasibound states in the Z-shaped junction induce resonant peaks around the Dirac point in the conductance profile. The resonant transmission via the quantum bound state is very sensitive to the size of the junction. The number and also the lifetimes of the quasibound states increase with the size of the Z-shaped junction. Long lifetime bound states which do not induce obvious resonant peaks exist in the junction with a wider or longer zigzag edged GNR. The resonant characteristics of the Z-shaped GNR can be tuned by the variation of the geometrical size.  相似文献   

3.
Using non-equilibrium Green׳s function and ab initio calculations we investigate structural, electronic, and transport properties of a junction consisting of armchair hexagonal boron phosphide nanoribbon (ABPNR) contacted by two semi-infinite electrodes composed of armchair graphene nanoribbons (AGNRs). We consider three different configurations including the pristine AGNR–BP–GNR and substitutions for Iron atoms, namely on phosphorus and boron atoms at one edge of the BP nanoribbon. The spin current polarization in all these cases is extracted for each structure and bias. Such hybrid system is found to exhibit not only significant spin-filter efficiency (SFE) but also tunable negative differential resistance (NDR).  相似文献   

4.
Vo Van On  Le Nhat Thanh 《哲学杂志》2020,100(14):1834-1848
ABSTRACT

The electronic properties and electron transport of a sawtooth penta-graphene nanoribbon (SSPGNR) under uniaxial strains are theoretically studied by density-functional theory (DFT) in combination with the non-equilibrium Green's function formalism. We investigated the electronic structures and the current–voltage (I–V) characteristics of the SSPGNRs under a sequence of uniaxial strains in range from 10% compression to 10% stretch. In this strained range, carbon atoms still keep a pentagon network, but with the changing bond lengths. The C–C bond lengths change almost linearly with the tolerable strain. The value of the band gap of SSPGNRs can be depicted as a parabola under uniaxial strain. Our calculations show that the current is monotonous increase with compressive strain at the same applied bias voltage. In case of tensile strain, the variable rule of the current is different that it increases at first and decrease later. The fundamental physical properties (band structure, I–V characteristic) of SSPGNRs seem to be more sensitive to compressive strain than the stretch strain. The current intensity of the compressive-SSPGNR is by 2 orders of magnitude compared to that of the tensile-SSPGNR at the same strain in range from 6% to 10%. The results obtained from our calculations are beneficial to practical applications of these strained structures in SSPGNRs-based electromechanical devices.  相似文献   

5.
陈风  陈元平  张迷  钟建新 《中国物理 B》2010,19(8):86105-086105
The transport properties of hexagonal boron--nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron--nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron--nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron--nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon.  相似文献   

6.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

7.
8.
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin–orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.  相似文献   

9.
Using Green's function method, we investigate the spin transport properties of armchair graphene nanoribbons (AG- NRs) under magnetic field and uniaxial strain. Our results show that it is very difficult to transform narrow AGNRs directly from semiconductor to spin gapless semiconductors (SGS) by applying magnetic fields. However, as a uniaxial strain is exerted on the nanoribbons, the AGNRs can transform to SGS by a small magnetic field. The combination mode be- tween magnetic field and uniaxial strain displays a nonmonotonic arch-pattern relationship. In addition, we find that the combination mode is associated with the widths of nanoribbons, which exhibits group behaviors.  相似文献   

10.
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.  相似文献   

11.
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor(DG ASi NR FET)are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function(NEGF) approach self-consistently coupled with a three-dimensional(3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASi NR FET. A novel two-parameter strain magnitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing Hf O2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance.Furthermore, a general model power(GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASi NR under strain.  相似文献   

12.
First-principles calculations have been employed to investigate the structural transformation and direct to indirect band gap transition of ZnO nanotubes under uniaxial strain. The results show that armchair and zigzag nanotubes can be transformed to each other via unusual fourfold-coordinated structures under the applied strain. Both the armchair and zigzag nanotubes exhibit direct band gap while the unusual fourfold-coordinated ones display indirect band gap. The origin of such a direct-to-indirect band gap transition is explained based on the analyses of atomic orbital contributions.  相似文献   

13.
基于平面波法,本论文对应变引起的二维蜂巢晶格光子晶体的能带结构进行了数值计算。选取的两个方向分别是锯齿型边界(zigzag)方向和扶手椅型边界(armchair)方向,在这两个典型方向上对二维蜂巢晶格进行了正负各20%的单轴应变。由于应变导致的对称性破缺,能带结构会有显著的变化。在沿锯齿型边界方向上,TE模带隙随着晶格被拉伸逐渐减小,TM模带隙在应变量大于16%时消失。对于沿扶手椅型边界方向,TE模带隙在压缩15%以上时逐渐减小,在其他应变量的情况下几乎保持不变;TM模带隙在应变量大于18%时消失。这些结果对于完善应力工程和设计二维光子晶体器件有重要的指导意义。  相似文献   

14.
《Physics letters. A》2020,384(9):126194
First principle calculations based on Density Functional Theory and nonequilibrium Green's function methods were carried out on a p-n junction device made of armchair graphene nanoribbons (GNR), with B and N doping and with defects, to examine transport properties of these systems. Doping and defects were found to lower band gap compared to pristine GNR. N-doping leads to the smallest band gap and the highest current (17.18 μA at 0.9 V bias, −12.82 μA at −1 V bias). B-doping shows the least current. Extensive delocalisation in N-doped system suggests a strong coupling between p and n parts, making the system a high rectifying diode. Linear correspondence between transmission coefficient and projected density of states suggest robust negative differential resistance effect. Tuning of efficiency of such p-n junction by doping and defect suggests the design of suitable nanoelectronic devices in future.  相似文献   

15.
The transport properties of AA-stacking bilayer graphene nanoribbons (GNs) have been explored by using the nonequilibrium Green's function method and the Landauer–Büttiker formalism. It is found that in the case of zero bias, the interlayer coupling has pronounced effects on the conductance of bilayer GNs. The zigzag bilayer GNs remain metallic, but metallic armchair bilayer GNs will be semiconductor as the strength of interlayer coupling exceeds critical value. The first Van Hove singularities move close to the Dirac point for both armchair and zigzag bilayer GNs with the strength of interlayer coupling increasing. Some prominent conductance peaks around the Fermi energy are observed in zigzag bilayer GNs, when the top layer and bottom layer have different widths. In the presence of bias voltage, the I–V curves show that for armchair bilayer GNs, the interlayer interactions suppress current, while the interlayer interactions have almost no effect on the current for zigzag bilayer GNs. The ripples in bilayer GNs suppress electronic transport, especially for zigzag bilayer GNs.  相似文献   

16.
We present a new procedure to investigate the I–V characteristics and the conductance for strained SWCNTs. These electronic transport properties have been studied theoretically at zero temperature for zig-zag, armchair and chiral SWCNTs under the effect of the uniaxial tension and torsional strain. The analytical expression of the energy spectrum in the tight binding approximation has been used to calculate the induced current and the conductance through Landauer–Büttiker formalism. It is shown that the conductance for unstrained CNTs at initial values of the voltage can take discrete values which are equal to zero and 4 (e2/h) for semiconducting and conducting SWCNTs respectively. The emergence of the kinks in the I–V characteristics is due to the discrete electronic spectrum in the SWCNTs. The location and number of kinks are changeable under the effect of strain process. The conductance in a strained armchair (5,5) CNT decreases to zero under torsional strain, consequently, it will transform the conducting SWCNTs at a threshold value of strain to a semiconducting SWCNT. In contrast, by applying the uniaxial tension on the armchair (5,5) CNT, the conductance does not change absolutely. There is a different behavior can be observed by applying the strain on zig-zag (10,0) CNT, where the conductance decreases rapidly and slightly under the influence of uniaxial tension and torsional strain, respectively. We found that the conductance of chiral (10,9) CNT is not significantly affected by applying the strain under consideration. More interestingly, the band structure of chiral (10,9) CNT under uniaxial tension and torsional strain have been investigated within the tight binding approximation.  相似文献   

17.
At this paper a field effect transistor based on graphene nanoribbon (GNR) is modeled. Like in most GNR-FETs the GNR is chosen to be semiconductor with a gap, through which the current passes at on state of the device. The regions at the two ends of GNR are highly n-type doped and play the role of metallic reservoirs so called source and drain contacts. Two dielectric layers are placed on top and bottom of the GNR and a metallic gate is located on its top above the channel region. At this paper it is assumed that the gate length is less than the channel length so that the two ends of the channel region are un-gated. As a result of this geometry, the two un-gated regions of channel act as quantum barriers between channel and the contacts. By applying gate voltage, discrete energy levels are generated in channel and resonant tunneling transport occurs via these levels. By solving the NEGF and 3D Poisson equations self consistently, we have obtained electron density, potential profile and current. The current variations with the gate voltage give rise to negative transconductance.  相似文献   

18.
We calculate the change in the correlation gap of armchair carbon nanotubes with uniaxial elastic strain. We predict that such a stretching will enlarge the correlation gap for all carbon nanotubes by a change that could be as large as several meV per percent of applied strain, in contrast with pure band structure calculations where no change for armchair carbon nanotubes is predicted. The correlation effects are considered within a self-consistent Hartree-Fock approximation to the Hubbard model with on-site repulsion only.Received: 29 December 2003, Published online: 20 April 2004PACS: 62.25. + g Mechanical properties of nanoscale materials - 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) - 71.20.Tx Fullerenes and related materials; intercalation compounds  相似文献   

19.
Using first‐principles calculations, we investigate the mechanical and electronic properties of phosphorene nanosheets under tensile strains. It is found that phosphorene possesses a prominent anisotropic elasticity with the large anisotropic factor of 15.5. Along the armchair direction, the phosphorene sheet exhibits a high tensile ductility, characterized by a large elastic strain limit of 0.31. While in the zigzag direction, the critical strain of phosphorene is dictated by the phonon instability and the in‐plane soft mode occurs beyond the 0.22 strain. Under uniaxial strains, the band gaps of phosphorene can be modulated continuously, whose band features are also altered accordingly. A Dirac‐like band structure appears in phosphorene under adequate strains along the zigzag direction. More interestingly, these Dirac cones of phosphorene display evident anisotropy, which have high Fermi velocities up to (6 – 7) × 105 m/s along the armchair direction but drop to zero along the zigzag direction. With such a characteristic, the strained phosphorene sheet acts as an intriguing one‐dimensional metal, which enables the system many potential applications in power‐efficient and ultrafast nanodevices. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
In this research, we have studied physisorption of hydrogen molecules on armchair boron nitride (BN) nanotube (3,3) using density functional methods and its effect on the current–voltage (IV) characteristic of the nanotube as a function of concentration using Green’s function techniques. The adsorption geometries and energies, charge transfer and electron transport are calculated. It is found that H2 physisorption can suppress the IV characteristic of the BN nanotube, but it has no effect on the band gap of the nanotube. As the H2 concentration increases, under the same applied bias voltage, the current through the BN nanotube first increases and then begins to decline. The current–voltage characteristic indicates that H2 molecules can be detected by a BN-based sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号