首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
This paper presents a numerical investigation of the hydro-thermal behavior of a ferrofluid (sea water and 4 vol% Fe3O4) in a rectangular vertical duct in the presence of different magnetic fields, using two-phase mixture model and control volume technique. Considering the electrical conductivity of the ferrofluid, in addition to the ferrohydrodynamics principles, the magnetohydrodynamics principles have also been taken into account. Three cases for magnetic field have been considered to study mixed convection of the ferrofluid: non-uniform axial field (negative and positive gradient), uniform transverse field and another case when both fields are applied simultaneously. The results indicate that negative gradient axial field and uniform transverse field act similarly and enhance both the Nusselt number and the friction factor, while positive gradient axial field decreases them. It is also concluded that, under the influence of both fields by increasing the intensity of uniform transverse field the effect of non-uniform axial fields decrease.  相似文献   

2.
3.
The present study addresses the heat transfer efficiency and entropy production of electrically conducting kerosene-based liquid led by the combined impact of electroosmosis and peristalsis mechanisms. Effects of nonlinear mixed convection heat transfer, temperature-dependent viscosity, radiative heat flux, electric and magnetic fields, porous medium, heat sink/source, viscous dissipation, and Joule heating are presented. The Debye–Huckel linearization approximation is employed in the electrohydrodynamic problem. Mathematical modeling is conducted within the limitations of δ << 1 and Re → 0. Coupled differential equations after implementing a lubrication approach are numerically solved. The essential characteristics of the production of entropy, the factors influencing it, and the characteristics of heat and fluid in relation to various physical parameters are graphically evaluated by assigning them a growing list of numeric values. This analysis reveals that heat transfer enhances by enhancing nonlinear convection and Joule heating parameters. The irreversibility analysis ensures that the minimization of entropy generation is observed when the parameters of viscosity and radiation are held under control. Fluid velocity can be regulated by adjusting the Helmholtz–Smoluchowski velocity and magnetic field strength.  相似文献   

4.
Mixed convection flow of Cu–water nanofluid inside a lid-driven square cavity with adiabatic horizontal walls and sinusoidal heating on sidewalls has been investigated numerically. The effects of increase in shear force for a fixed buoyancy force and effects of increase in buoyancy force for a fixed shear force were investigated. Effects of variations of Richardson number, phase deviation of sinusoidal heating, and volume fraction of nanoparticles on flow and temperature field were studied. The obtained results showed that for a constant Grashof number at all Richardson numbers, a clockwise eddy was developed inside the cavity, also the rate of heat transfer increases with decrease in Richardson number and increase of volume fraction of nanoparticles. For a constant Reynolds number the clockwise eddy is observed up to Ri = 1. For Ri = 10 a multicellular flow pattern is formed inside the cavity. Moreover it was found that when the Reynolds number is kept constant, the rate of heat transfer increases with increase in Richardson number.  相似文献   

5.
Hartree–Fock theory predicts a stripe-like ground state for the two-dimensional electron gas in a bilayer quantum Hall system in a quantizing magnetic field at filling factor 4N+1 (with N>0). This stripe state contains quasi-1D linear coherent regions where electrons are delocalized across both wells and which support low-energy collective excitations in the form of phonons and pseudospin waves. We have recently computed the dispersion relation of these low-energy modes in the generalized random phase approximation. In this work, we propose an effective pseudospin model in which the stripe state is modeled as an array of coupled 1D anisotropic XY systems. The coupling constants and stiffness of our model are extracted from the density and pseudospin response functions computed in the GRPA.  相似文献   

6.
Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also be dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy.  相似文献   

7.
In the Hartree–Fock approximation and at total filling factor ν=4N+1, the ground state of the two-dimensional electron gas in a double quantum well system in a quantizing magnetic field is, in some range of interlayer distances, a coherent striped phase. This stripe phase has one-dimensional coherent channels that support charged excitations in the form of pseudospin solitons. In this work, we compute the transport gap of the coherent striped phase due to the creation of soliton–antisoliton pairs using a supercell microscopic unrestricted Hartree–Fock approach. We study the energy gap as a function of interlayer distance and tunneling amplitude. Our calculations confirm that the soliton–antisoliton excitation energy is lower than the corresponding Hartree–Fock electron–hole pair energy.  相似文献   

8.
The integer and fractional quantum Hall effects are two remarkable macroscopic quantum phenomena occurring in two‐dimensional strongly correlated electronic systems at high magnetic fields and low temperatures. Quantization of Hall resistivity in the very high magnetic field regime at partial filling of the lowest Landau level indicates the stabilization of an electronic liquid quantum Hall phase of matter. Other interesting phases that differ from the quantum Hall phases take prominence in weaker magnetic fields when many more Landau levels are filled. These states manifest anisotropic magneto‐transport properties and, under certain conditions, appear to mimic charge density waves and/or liquid crystalline phases. One way to understand such a behavior has been in terms of effective interaction potentials confined to the highest Landau level partially filled with electrons. In this work we show that, for weak magnetic fields, such a quantum treatment of these strongly correlated Coulomb systems resembles a semi‐classical model of rotating electrons in which the time‐averaged interaction potential can be expressed solely in terms of guiding center coordinates. We discuss how the features of this semi‐classical effective potential may affect the stability of various strongly correlated electronic phases in the weak magnetic field regime (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The emission properties of suspensions of nanocrystalline ZnO particles with different particle sizes were studied. Two emission bands were observed, one being an exciton emission and the other the visible emission of ZnO. The energy of both emissions depends on the particle dimensions due to size quantization. A linear relationship between the energetic maxima of the two emission bands is found. Because of the difference in effective masses of electrons and holes in ZnO, the slope of the linear relationship clearly indicates that the visible emission is due to the transition of an electron from the conduction band to a deep trap. The nature of the deep trap is also considered.  相似文献   

10.
Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.  相似文献   

11.
In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.  相似文献   

12.
Deep magnetic capture and clinical application are the current trends for magnetic targeted drug delivery system. More promising and possible strategies are needed to overcome the current limitations and further improve the magnetic targeting technique. Recent advances in the development of targeting magnet system show promise in progressing this technology from the laboratory to the clinic. Starting from well-known basic concepts, current limitations of magnetic targeted drug delivery system are analyzed. Meanwhile, the design concepts and evaluations of some effective improvements in magnet system are discussed and reviewed with reference to (i) reasonable design of magnet system; (ii) control modes of magnet system used to generate dynamical magnetic fields; and (iii) magnetic field driving types.  相似文献   

13.
14.
Hou Z  Li L  Zhan C  Zhu P  Chang D  Jiang Q  Ye S  Yang X  Li Y  Xie L  Zhang Q 《Ultrasonics》2012,52(7):836-841
10-Hydroxycamptothecin (HCPT) loaded PLA microbubbles, used as an ultrasound-triggered drug delivery system, were fabricated by a double emulsion-solvent evaporation method. The obtained microbubbles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and confocal laser scanning microscope (CLSM). In addition, the effect of diagnostic ultrasound exposure on BEL-7402 cells combined with HCPT-loaded PLA microbubbles was evaluated using cytotoxicity assay, CLSM and flow cytometry (FCM). It was found that the HCPT-loaded PLA microbubbles showed smooth surface and spherical shape, and the drug was amorphously dispersed within the shell and the drug loading content reached up to 1.69%. Nearly 20% of HCPT was released upon exposure to diagnostic ultrasound at frequency of 3.5 MHz for 10 min. Moreover, HCPT fluorescence in the cells treated only with the HCPT-loaded PLA microbubbles was discernible, but less intense, while those treated with the microbubbles in conjunction with ultrasound exposure was evident and intense, indicating an increased cellular uptake of HCPT by ultrasound exposure. Cytotoxicity test on BEL-7402 cells indicated that the HCPT-loaded PLA microbubbles combined with ultrasound exposure were more cytotoxic than the microbubbles alone. The results suggest that the combination of drug loaded PLA microbubbles and diagnostic ultrasound exposure exhibit an effective intracellular drug uptake by tumor cells, indicating their great potential for antitumor therapy.  相似文献   

15.
The induced Chern-Simons term for a paired electron state is calculated in the quantum Hall system by using a field theory on the von Neumann lattice. The coefficient of the Chern-Simons term, which is the Hall conductance, has not only the usual term proportional to a filling factor due to P (parity) & T (time reversal) symmetry breaking but also correction terms due to P & T & U(1) symmetry breaking. The correction term essentially comes from the Nambu-Goldstone mode and depends on an infrared limit. It is shown that the correction term is related to a topological number of a gap function in the momentum space.  相似文献   

16.
Formulation of poorly soluble drugs is a general intractable problem in pharmaceutical field, especially those compounds poorly soluble in both aqueous and organic media. It is difficult to resolve this problem using conventional formulation approaches, so many drugs are abandoned early in discovery. Nanocrystals, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop the poorly soluble drugs, because of their simplicity in preparation and general applicability. In this article, the product techniques of the nanocrystals were reviewed and compared, the special features of drug nanocrystals were discussed. The researches on the application of the drug nanocrystals to various administration routes were described in detail. In addition, as introduced later, the nanocrystals could be easily scaled up, which was the prerequisite to the development of a delivery system as a market product.  相似文献   

17.
唐古月  娄钦  李凌 《计算物理》2020,37(3):263-276
采用格子Boltzmann方法对可变形腔体内自然对流问题进行数值研究,给出平均努赛尔数的经验关系式.腔体左壁加热长度分为左壁面的整个区域(H)和左壁面的中间区域(0.5H)两种情况,右壁向外界环境开放,上下边界绝热且可以上下移动,以此调节右出口尺寸.主要研究瑞利数(104Ra ≤ 106),右出口尺寸(1.0HL ≤ 2.0H),左壁加热尺寸(Lh=0.5HLh=H)对腔体内等温线、流线、局部努塞尔数和平均努赛尔数的影响.结果表明:腔体内换热随着瑞利数的增大越来越强烈,表现为椭圆形准静止区域更加靠近上绝热壁,且热分层厚度逐渐变小,平均努赛尔数增加.而右出口尺寸的增加,对于两种加热尺寸下腔内的换热效果有不同程度影响,其中与加热尺寸为左壁面的全部区域Lh=H相比,加热尺寸为左壁面的中间情况Lh=0.5H时,右侧开口尺寸的增加对换热效果的影响不显著.此外,左壁加热尺寸为0.5H时显示出比加热尺寸为H时更高的平均传热效率.最后,针对不同的加热尺寸,提出加热面平均努赛尔数与Ra数及右壁面开口尺寸L*之间函数关系的经验预测,拟合效果满足工程实践与设计需要.  相似文献   

18.
对国家标准中循环加热热泵热水机性能评价方法的研究,结合主流性能评价系统存在的不足,给出提高性能评价系统精度及可行性的思路:一是尽可能的减少热量损失所占机组总加热的比重,二是简化精确计算热量损失方法。PPR管件替换钢制管件可以有效减少评价系统热损,热损修正函数的引入使热损计算更加准确、易行,使得循环加热式热泵热水机组制热量的计算也更加准确,性能系数的得出更加可靠,从很大程度上促进了热泵热水机行业的性能改善与研发进程,加速热泵热水机替换传统热水器的进程,为国家的低碳节能与可持续发展有一定促进。  相似文献   

19.
超声联合微泡介导的细胞内药物递送是通过微泡的声空化与细胞的相互作用而实现的.作为一种非侵入式的、非病毒的、具有靶向性的、可在成像技术引导下的药物递送技术,超声联合微泡在临床应用上具有独特的优势.该文围绕超声联合微泡实现药物递送的发生机理,从微泡的声学动态响应、细胞响应、细胞外物质进入细胞的动态过程及临床试验进展4方面对...  相似文献   

20.
Journal of Nanoparticle Research - Superparamagnetic iron oxide nanoparticles (SPIONs) are evolving as a mainstay across various applications in the field of Science and Technology. SPIONs have...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号