首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
First-principles nonmagnetic calculations reveal a metallic character in zigzag SiGe nanoribbons (ZSiGeNRs) regardless of their width. The partial DOS projected onto the Si and Ge atoms of ZSiGeNR shows that a sharp peak at the Fermi level is derived from the edge Si and Ge atoms. The charge density contours show the Si–Ge bond is covalent bond, while for the Si–H bond and Ge–H bond, the valence charges are strongly accumulated around H atoms due to their stronger 1 s potential and the higher electronegativity of 2.20 than that of 1.90 for Si atom and 2.01 for Ge atom, so that a significant charge transformation from Si or Ge atoms to H atoms and thus an ionic binding feature. Spin–polarization calculations show that the band structures of ZSiGeNR are modified by the dangling bonds. Compared with perfect ZSiGeNR which is a ferrimagnetic semiconductor, the bands of the ZSiGeNRs with bare Si edge, bare Ge edge, and bare Si and Ge edges shift up and nearly flat extra bands appear at the Fermi level. The ZSiGeNR with bare Si edge or bare Ge edge is a ferrimagnetic metal, while ZSiGeNR with bare Si and Ge edges is a nonmagnetic metal.  相似文献   

3.
The structural and electronic properties of zigzag edge silicene nanoribbons (ZSiNRs) doped with a single C chain have been studied by first-principles projector augmented wave (PAW) potential within the density function theory (DFT) framework. The results show that the C chain is almost close to a straight one which results in a transverse contraction near C chain and thus the ribbon width. The C–Si and Si–H bonds are typical ionic bonds while the C–H bond is a covalence bond. ZSiNRs doped with a single C chain are all metallic independent of the position of the C chain. All these results have been explained satisfactory from the electronegativity difference and the bound force to the electrons because of the atom radius difference between the elements.  相似文献   

4.
闵新民  朱磊  邢学玲 《计算物理》2004,21(3):373-376
用离散变分密度泛函方法(DFT-DVM)计算了钴酸盐Ca3Co2O6及其掺镍体系,讨论了电子结构,化学键等与热电性能之间的关系.结果表明,价带和导带主要由Co3d,Ni3d和O2p原子轨道贡献.价带和导带之间的能隙宽度表现出了半导体电子结构特征,且掺镍体系的能隙比不掺镍体系窄.掺镍体系的共价键和离子键都比不掺镍体系弱.由此得到,掺镍后体系的热电性能将有所改善.  相似文献   

5.
黄艳平  袁健美  郭刚  毛宇亮 《物理学报》2015,64(1):13101-013101
基于密度泛函理论的第一性原理计算, 研究了硅烯饱和吸附碱金属元素原子的稳定性、微观几何结构和电子性质, 并与纯硅烯及其饱和氢化结构进行了对比分析. 研究发现复合物SiX(X=Li, Na, K, Rb)的形成能都是负的, 相对于纯硅烯来说可以稳定存在. Bader电荷分析表明, 电荷从碱金属原子转移至硅原子. 从成键方式来看, 硅烯与氢原子形成共价键, 而与碱金属原子之间形成的键主要是离子性成键, 但还存在部分共价关联成分. 能带计算表明, 锂原子饱和吸附在硅烯形成的复合物SiLi是直接带隙的半导体, 带隙大小为0.34 eV. 其他碱金属饱和吸附在硅烯上形成的复合物都表现为金属性.  相似文献   

6.
Under generalized gradient approximation (GGA), the structural and electronic properties of AlN and Si sheets, hydrogen terminated AlN and Si nanoribbons with hexagonal morphology and 2, 4, 6 zigzag chains across the ribbon width and the hexagonally bonded heterosheets AlNSix (x=2, 4, and 6) consisting of hexagonal networks of AlN (h-AlN) strips and silicene sheets with zigzag shaped borders have been investigated using the first-principles projector-augmented wave (PAW) formalism within the density function theory (DFT) framework. The AlN sheet is an indirect semiconductor with a band gap of 2.56 eV, while the Si sheet has a metallic character since the lowest unoccupied conduction band (LUCB) and the highest occupied valence band (HOVB) meet at one k point from Γ to Z. In the semiconductor 6-ZAlNNR, for example, the states of LUCB and HOVB at zone boundary Z are edge states whose charges are localized at edge Al and N atoms, respectively. In metallic 6-ZSiNR, a flat edge state is formed at the Fermi level EF near the zone boundary Z because its charges are localized at edge Si atoms. The hybridizations between the edge states of h-AlN strips and silicene sheets result in the appearance of border states in the zigzag borders of heterosheets AlNSix whose charges are localized at two atoms of the borders with either bonding or antibonding π character.  相似文献   

7.
采用密度泛函理论框架下的第一性原理平面波赝势方法,对Al中分别加入H,O,N和He原子后的晶体状态进行了研究.通过晶体结构和形成能分析比较了杂质原子占据不同位置的难易程度及对晶体稳定性的影响,并从态密度、电荷密度和电荷布居的角度,分析了其电子结构.结果表明:H、O和N原子占据金属Al的四面体间隙最稳定,而He原子主要占据金属Al的八面体间隙. O和N原子与Al原子具有强烈的共价作用,H原子与Al原子存在共价作用但相对较弱,而He原子与Al原子的相互作用以范德华力为主.进一步揭示了四种原子在金属Al中不同行为的电子机制.  相似文献   

8.
By using the first-principles calculations, the electronic properties are studied for the F-terminated SiC nanoribbons (SiCNRs) with either zigzag edges (ZSiCNRs) or armchair edges (ASiCNRs). The results show that the broader F-terminated ZSiCNRs are metallic and the edge states appear at the Fermi level, while the F-terminated ASiCNRs are always semiconductors independent of their width but the edge states do not appear due to the Si-C dimer bonds at the edges. The charge density contours analyses shows that the Si-F and Si-C bonds are all ionic bonds due to the much stronger electronegativities of the F and C atoms than that of the Si atom. However, the C-F bonds display a typical non-polar covalent bonding feature because of the electronegativity difference between the F and C atoms of 1.5 is a much smaller than that of between the F and Si atoms of 2.2, as well as the tighter bounded C 2s 22p 2 electrons with smaller orbital radius than the Si 3s 23p 2 electrons. For both the F- and the H-terminated ZSiCNRs, the ground state is a ferromagnetic semiconductor.  相似文献   

9.
叶佳宇  刘亚丽  王靖林  何垚 《物理学报》2010,59(6):4178-4185
采用基于密度泛函理论的平面波赝势方法,分别计算纯净的以及掺杂Zr的NaAlH4和Na3AlH6的晶格结构常数、能量、电子局域函数和电子态密度.结果表明:NaAlH4和Na3AlH6分别是带隙为46和31 eV的绝缘体;NaAlH4和Na3AlH6中Al—H键是共价键,Na—H键是离子键;Zr原子替代Na原子 关键词: 储氢 4')" href="#">NaAlH4 3AlH6')" href="#">Na3AlH6 Zr掺杂  相似文献   

10.
Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 Å, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level EF in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ3n > Δ3n+1 > Δ3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.  相似文献   

11.
尚家香  喻显扬 《物理学报》2008,57(4):2380-2385
通过赝势平面波方法系统地研究了3d过渡金属元素在B2-NiAl中的占位以及对键合性质的影响.通过形成能得出Sc,Ti,V 和Zn元素优先取代NiAl中的Al位,而Cr,Mn,Fe,Co和Cu优先取代Ni位.通过分析晶格常数变化量、电荷聚居数、交叠聚居数以及价电荷密度分布, 讨论了晶格畸变和键合性质的变化.结果表明: 取代Al的Sc,Ti,V和Zn元素掺杂使NiAl中晶格发生畸变,这对NiAl键合性质的变化起着重要作用,这些掺杂元素与第一近邻Ni原子产生强烈的排斥作用,形成反键,同时它们之间发生较大的电荷转 关键词: NiAl金属间化合物 3d过渡金属 第一性原理 键合性质  相似文献   

12.
高潭华 《物理学报》2014,63(4):46102-046102
采用基于自旋极化密度泛函理论的第一性原理计算,研究了在氟化石墨烯中少量C原子被M原子(M=B,N,Si,P)替代后原子片的磁性和电子性质.结果表明:不同原子掺杂后的氟化石墨烯的电子结构会发生很大的变化,并有很大的不同.掺杂B和P原子后,纳米原子片由半导体转变为金属,并且由非磁性转变为磁性;掺杂N原子后,材料则仍为半导体,但具有磁性;进一步讨论了掺杂原子浓度与磁性的关系.对于Si原子掺杂的氟化石墨烯原子片,其半导体性质不变,但禁带宽度也会发生改变.  相似文献   

13.
路广霞  张辉  张国英  梁婷  李丹  朱圣龙 《物理学报》2011,60(11):117101-117101
采用基于密度泛函理论的赝势平面波第一性原理方法,研究了LiNH2缺陷及其掺杂原子交互作用对其释氢影响.通过对其进行优化求得它们的局域最稳定结构并计算了含间隙H原子缺陷的LiNH2及其掺杂合金的结合能、间隙缺陷形成能、态密度和电荷布居.结果表明: 系统结合能不能反映LiNH2及其掺杂合金的释氢性质;平衡时,LiNH2中有一定的间隙氢原子存在,Mg,Ti掺杂使形成能大大降低,大大增大了间隙氢的浓度. 间隙H原子在带隙引入了缺陷能级使带隙大大减小,提高释氢能力.间隙H原子导致[NH2]-中N-H原子间相互作用减弱,容易释氢.间隙H与[NH2]-中N存在共价作用,可以解释LiNH2释氢反应中NH3的放出.当存在掺杂时,N-H键的键强不均衡,部分较弱,部分较强,较弱的N-H键中H容易放出. 关键词: 储氢材料 第一性原理 缺陷 释氢机理  相似文献   

14.
此文用基于密度泛函理论第一性原理的贋势平面波方法,计算了Fe_2Si及Mn掺杂Fe_2Si体系的能带结构、电子态密度和磁学特性,分析了不同位置Mn掺杂对Fe_2Si电磁特性的影响,获得了纯的和不同位置Mn掺杂的Fe_2Si体系是铁磁体,自旋向上的能带结构穿过费米面表现金属特性,纯Fe_2Si的半金属隙为0.164e V;Mn掺杂在Fe1位时,自旋向下部分转变为A-M间的间接带隙半导体,体系呈现半金属特性,此时磁矩为2.00μB,是真正的半金属性铁磁体;掺杂在Fe2位时,自旋向下部分的带隙值接近于0,体系呈现金属特性;掺杂在Fe3位时,自旋向下部分转变为L-L间的直接带隙半导体,体系呈现半金属特性等有益结果 .自旋电荷密度分布图表明Mn原子的3d电子比较局域,和周围原子成键时3d电子更倾向于形成共价键.体系的半金属性和磁性主要来源于Fe-3d电子与Mn-3d电子之间的d-d交换,Si-3p电子与Fe、Mn-3d电子之间的p-d杂化.这些结果为半金属铁磁体Fe_2Si的电磁调控提供了有效的理论指导.  相似文献   

15.
The effect of the dangling bond on the electronic and magnetic properties of BN nanoribbon with zigzag edge (ZBNNR) and armchair edge (ABNNR) have been studied using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. Though ZBNNR or ABNNR with H atom terminated at both edges is nonmagnetic semiconductor, the dangling bond induces magnetism for the ZBNNR with bare N edge, bare B edge, bare N and B edges, the ABNNR with bare N edge and bare B edge. However, the ABNNR with bare N and B edges is still nonmagnetic semiconductor due to the strong coupling of the dangling bonds of dimeric N and B atoms at the same edge. The magnetic moment of ZBNNR with bare N(B) edge is nearly half the magnetic moment of ABNNR with bare N(B) edge. Such a half relationship is also existed in the number of the dangling bond states appeared around the Fermi level in the band structures. Furthermore, the dangling bond states also cause both ZBNNR and ABNNR with bare N edge a transition from semiconducting to half-metallic and thus a completely (100%) spin-polarization, while cause both ZBNNR and ABNNR with bare B edge as well as ABNNR with bare N and B edges only a decrease in their band gap.  相似文献   

16.
Adhesion and bonding of the Al/TiC interface   总被引:1,自引:0,他引:1  
The electronic structure and adhesion of Al/TiC(0 0 1) interface are examined by density functional theory. Our results show the preferred configuration is the Al atom above the ceramic’s metalloid atom. The calculated adhesion explains the conflicting experimental results of the Wad from the aspect of the establishing different chemical equilibrium bonds at the different temperatures. By applying several analysis methods we have thoroughly characterized the interfacial electronic structure. For the Ti-site the interfacial Al and Ti atoms form the metal/covalent bond, while for the C-site the interfacial Al and C atoms form the polar covalent interaction. In addition, we examine the effects of Mg and Si alloying elements at the interface, and find that Mg greatly deteriorates the interface and Si slightly improves the interface. The cleavage may take place preferentially at the interface with the help of interface strain energy, especially with the addition of Mg. This is in good agreement with the experimental result.  相似文献   

17.
A series of Al 2p, K 2p, O 1s and N 1s core‐level spectra have been used to characterize the interaction between potassium (K) and tris(8‐hydroxyquinoline) aluminium (Alq3) molecules in the K‐doped Alq3 layer. All core‐level spectra were tuned to be very surface sensitive in selecting various photon energies provided by the wide‐range beamline at the National Synchrotron Radiation Research Center, Taiwan. A critical K concentration (x = 2.4) exists in the K‐doped Alq3 layer, below which the K‐doped atoms generate a strained environment near the O and N atoms within 8‐quinolinoline ligands. This creates new O 1s and N 1s components on the lower binding‐energy side. Above the critical K coverage, the K‐doped atoms attach the O atoms in the Al—O—C bonds next to the phenoxide ring and replace Al—O—C bonds by forming K—O—C bonds. An Alq3 molecule is disassembled into Alq2 and Kq by bond cutting and bond formation. The Alq2 molecule can be further dissociated into Alq, or even Al, through subsequent formations of Kq.  相似文献   

18.
The electronic and structural properties of substitutional and doped phosphorene with B, N and Si were studied using first principles calculations based on density functional theory. Moreover, electronic and structural properties of functionalized phosphorene slowly increasing the concentration of doping was investigated. Phosphorene strongly binds with doped functionalization; B doped phosphorene is the most stable configuration studied. Si doped phosphorene maintains the semiconductor characteristic. B and N doped phosphorene present n-type and p-type semiconductors, respectively. Doped phosphorene with odd number of Si is a semiconductor material, doped phosphorene with an odd number of B has n-type semiconductor characteristic, and doped phosphorene with odd number of N atoms has a p-type semiconductor behaviour. Doped phosphorene with even number of Si has a metallic characteristic, while B and N doped phosphorene with even number present a semiconductor behaviour. This work reveals that phosphorene electronic properties could be changed by introducing the dopants on the system, and the properties are affected by the increasing number of dopants on phosphorene sheet.  相似文献   

19.
Using wet chemical reaction between N-vinylcarbazole and hydrogen-terminated silicon surface, we present a new and simple route to directly bond π-conjugated organic molecule on silicon surface. The Si can be in the form of single crystal Si including heavily doped p-type Si, intrinsic Si, heavily doped n-type Si, on Si(1 1 1) and Si(1 0 0), and on n-type polycrystalline Si. The covalent bond between 9-vinylcarbazole and silicon surface was confirmed by reflectance FTIR, XPS and contact angle measurement, respectively. A data-encompassing explanation for the mechanism discusses the possible route of the reaction. This simple and low-costly reaction offers an attractive route to attach functional conjugated molecules onto the semiconductor surface which aims to create some unique molecular device in the future.  相似文献   

20.
The 3d electron states in Ni3Al single crystals doped with Fe, Co, and Nb have been investigated using angular correlation of annihilation radiation (ACAR). The ACAR spectra contain information on the momentum distribution of valence electrons and strongly bound 3d electrons of the intermetallic compound. It has been established that the positrons in the Ni3Al crystals predominantly annihilate in the nickel sublattice from delocalized states. The doping of the compound by the third element leads to a variation in the momentum distribution of Ni 3d electrons due to the change in the character of interatomic bonds. An analysis of the momentum distribution has demonstrated that the niobium atoms increase the covalent component of the chemical bond as compared to the binary compound due to the d Nb-d Ni hybridization. The doping with cobalt atoms also enhances the tendency toward the formation of the covalent bond. At the same time, iron atoms have a weak effect on the electronic structure of the intermetallic compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号