首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concept of non-diamond sp2 impurity states as charge transfer mediators on boron-doped diamond (BDD) surface was suggested as an explanation for the electrochemical behavior of synthetic diamond based electrodes. In order to verify this concept, graphite particles (sp2) were deposited on diamond electrodes (sp3) by mechanical abrasion. The behavior of the so prepared diamond–graphite composite electrodes were compared with those of as-grown (BDDag) and those after mild anodic polarization (BDDmild).Outer-sphere electron transfer processes such as ferri/ferrocyanide (Fe(CN)6III/II) and inner-sphere charge transfer reactions such as 1,4-benzoquinone/hydroquinone (Q/H2Q) were chosen in order to investigate the electrochemical properties of these composite electrodes. Both redox systems became more reversible as the graphite (sp2) loading increased. A strong analogy existed between as-grown diamond electrodes and diamond–graphite composite electrodes.Finally a model is proposed which describes the BDD electrode surface as a diamond matrix in which non-diamond (sp2) impurity states are dispersed. These non-diamond sp2 states on BDD surface acts as charge mediators for both inner-sphere and outer-sphere reactions.  相似文献   

2.
Electrochemical oxidation processes usually favored specific degradation pathways depending on anode materials. In this work, a series of sulfonamides (SNs) were degraded by electrochemical oxidation. Compared to Pt anodes (0.1567–0.1795 h−1), degradation rates of SNs were much higher at boron-doped diamond (BDD) anodes (2.4290–13.1950 h−1). However, the same intermediates were detected in the two anode systems. Due to the strong oxidizing ability of BDD anodes, a large amount of intermediates with high toxicities were initially generated and then finally reduced in the BDD anode systems, while the amount of intermediates continuously increased in the Pt anode systems. Additionally, SNs were degraded faster in Na2SO4 than NaH2PO4 electrolytes at BDD anodes, while they were similar at Pt anodes. This study demonstrated that the degradation pathways of SNs at BDD and Pt anodes were similar, but the evolutions of intermediate amounts and toxicities were different due to their varied oxidizing abilities.  相似文献   

3.
Thin-film boron-doped diamond (BDD) electrochemistry has made a tremendous progress in electrochemical synthesis/recovery of high-added value products from aqueous and gaseous waste streams. The distinguished electrochemical characteristic of this electrode has made this material emerging and successfully used in electrosynthetic transformations, besides its destructive and powerful performance in disinfection and detoxification of wastewaters. Organic electrosynthesis is achieved by the oxyl radical oxidation formed at BDD, peroxo compounds electrosynthesis is attained by oxidation of corresponding anions at the BDD surface, whereas electrochemical conversion of SO2, CO2, NO3?, and NH3 to value-added products occurs by BDD cathodic reduction process. There are still some challenges needed to address for seamless scale-up and translation into application of this future technology.  相似文献   

4.
“Electroless” oxidation, at room temperature, of boron-doped diamond (BDD) films with oxidizing agents as Ce4+, MnO4?, H2O2 or S2O82? is an efficient way to transform hydrogen terminations (C-H) into oxygen ones (C-O). To investigate the oxidation mechanism of diamond surfaces through these open current potential (OCP) processes, we study in the present work the reduction mechanisms of the different oxidizing agents at BDD surfaces. Current-voltage measurements were performed using a rotating disk electrode of diamond immersed in a solution containing one of the species. Two different mechanisms were evidenced: an electrochemical for Ce4+ and MnO4? and a chemical one based on the production of radicals under light exposure for H2O2 and S2O82?.  相似文献   

5.
The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron‐doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher‐order products, and also reduces the generation of H2. In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74 %) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp3‐bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost‐effective conversion of CO2.  相似文献   

6.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

7.
The electrochemical behavior of different redox systems and detection of catechol were performed on the as‐grown boron‐doped diamond (BDD) electrodes and the nanograss array BDD. Compared with as‐grown BDD, the electron transfer on the nanograss array BDD surface became slower toward the negatively charged Fe(CN)63?, whereas changed little toward the positively charged Ru(NH3)63+. The nanograss array BDD showed higher electrocatalytic activity toward the catechol detection than did the as‐grown BDD. Good linearity was observed for a concentration range from 5 to 100 μM with a sensitivity of 719.71 mA M?1 cm?2 and a detection limit of 1.3 μM on the nanograss array BDD.  相似文献   

8.
Hybrid diamond/sp2-C nanostructures have aroused growing interests in electrochemistry currently owing to the good chemical/physical properties, including high electrical conductivity, mechanical robustness, and high specific surface area, as well as the unique electrochemical properties, namely, an enhanced electrochemical activity while retaining a wide potential window and low background currents when properly engineering the microstructure. This mini-review presents the recent electrochemistry process of diamond/sp2-C nanostructures. In particular, the synthetic methods, microstructures, and possible growth mechanism of diamond/sp2-C nanostructures are briefly summarized. Then, the electrochemical property tailoring is addressed in detail, and subsequently, their potential applications in electrochemistry including electrochemical sensors, supercapacitors, electrocatalysis, and other applications are discussed. The future perspectives of diamond/sp2-C nanostructures in electrochemistry finally conclude this review.  相似文献   

9.
Absolute Raman scattering activities of aqueous solutions of the following ions have been measured: ClO, ClO2, ClO3, ClO4. Electro-optical parameters (EOPs) for the ClO bonds in these compounds were calculated. Equilibrium bond polarizabilities and their derivatives with respect to bond length can be correlated with the number of valence electrons in non-bonding and antibonding orbitals. High equilibrium bond polarizability goes with small polarizability derivatives, and vice versa, for the compounds studied here.  相似文献   

10.
Surface coverage measurements of electroactive quinone groups present on sp2 carbon sites, are used to inform on the sp2 surface content of boron doped diamond (BDD) electrodes. Laser micromachining of an electrode surface is used to systematically increase the amount of sp2 carbon present by increasing the area machined. A linear relationship between quinone surface coverage and surface area lasered is determined (R2 = 0.9999). This approach can also be used for comparative assessment of electrodes containing different amounts of surface sp2 carbon.  相似文献   

11.
Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD). The morphologies and structures of the prepared diamond thin films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical responses of K4Fe(CN)6 on different BDD electrodes were investigated. The results suggested that electron transfer was faster at the boron-doped nanocrystalline diamond (BDND) thin film electrodes in comparison with that at other BDD thin film electrodes. The prepared BDD thin film electrodes without any modification were used to directly detect glucose in the basic solution. The results showed that the as-prepared BDD thin film electrodes exhibited good selectivity for detecting glucose in the presence of ascorbic acid (AA) and uric acid (UA). The higher sensitivity was observed on the BDND thin film grown on the boron-doped microcrystalline diamond (BDMD) thin film surface, and the linear response range, sensitivity and the low detection limit were 0.25–10 mM, 189.1 μA mmo?1 cm?2 and 25 μM (S/N=3) for glucose in the presence of AA and UA, respectively.  相似文献   

12.
This work concerns some electrochemical polymerizations of pyrrole derivatives in order to obtain intrinsically conducting polymers: the study was mainly concerned with the electrochemical polymerization of 3‐alkyl substituted pyrroles with different chain lengths (3‐hexylpyrrole, 3‐decylpyrrole, 3‐hexadecylpyrrole). Different experimental conditions were adopted with 3‐alkylpyrroles: different solvents (propylene carbonate, acetonitrile), different counterions (ClO4, BF4, NO3, PF6, TsO) and different current densities (0.05, 0.1, 0.2, 0.4 mA/cm2). The synthesized conducting polymers were characterized through Fourier transform infrared spectroscopy, 13C cross‐polarization magic angle spinning solid‐state nuclear magnetic resonance and electrical conductivity measurements to study the relations connecting the experimental conditions of synthesis with the structure and electrical properties of the polymers. Thermogravimetric analysis, differential scanning calorimetry and isothermal heatings were performed in order to evaluate the polymer's thermal stability. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
A near-UV triplet emission from [Au2(dcpm)2](ClO4)2 has been discovered. Studies on the spectroscopic properties of the complexes [Au2(dcpm)2]Y2 (Y=ClO4, PF6, CF3SO3, [Au(CN)2], Cl, and I; dcpm=bis(dicyclohexylphosphanyl)methane) support the assignment of the high-energy emissions at 360–368 nm to the 3[dσ*pσ] excited state, adducts of which exhibit exciplex emissions in the visible region with solvent or counterions (see schematic diagram).  相似文献   

14.
The oxidation of chlorobenzene (CB) was studied by electrochemical electrolysis using boron-doped diamond (BDD), PbO2 or platine (Pt) as anode and graphite bar as cathode. The effect of applied current density, supporting electrolyte and initial pH value were also studied. The results demonstrated that BDD anode had the best effectiveness and accomplishment of electrochemical degradation of CB compared to PbO2 and Pt anodes. For a current density of 20 mA/cm2 and at pH = 3, the elimination of COD and TOC were about 97% and 98%, respectively, after 360 min of electrolysis with the BDD anode. Pseudo-first order kinetics appears to be the most appropriate to describe the degradation of chlorobenzene. The electrochemical mechanism of chlorobenzene on BDD was proposed based on the identified intermediates.  相似文献   

15.
The electrochemical oxidation reaction of nitrogen dioxide (NO2) using boron doped diamond (BDD) electrodes is presented. Cyclic voltammetry of NO2 in a 0.1 M KClO4 solution exhibits oxidation peaks at +1.1 V and +1.5 V (vs. Ag/AgCl) which are attributable to oxidation of HONO and NO2, respectively. Moreover, the pH and scan rate dependences were investigated to study the oxidation mechanism. A linear calibration curve was observed in the concentration range of ∼1 to 5 mM (R2=0.99) with a detection limit of 11.1 ppb (S/B=3) for HONO and 58.6 ppb (S/B=3) for NO2. In addition, the analytical performance was compared with those using glassy carbon, platinum and stainless steel as the working electrode.  相似文献   

16.
Few-layered black phosphorus (BP) is a two-dimensional material that has attracted intensive attention for applications in energy storage and catalysis due to its large surface area and good electrical and thermal conductivity. Herein, a comparable study of BP electrochemical exfoliation in various solutions of tetrabutylammonium salts (TBAX; X is PF6, BF4, and ClO4) in DMSO is reported. Based on morphological and structural analyses, it is shown that TBAPF6/DMSO medium was specifically appropriate for the production of high-quality BP nanosheets with micrometer lateral size and a thickness of about 2.4 nm. TBAPF6/DMSO-processed, few-layered BP exhibits enhanced hydrogen evolution reaction (HER) catalytic activity compared with that of samples exfoliated with the assistance of BF4 and ClO4 ions. Finally, the fabrication of flexible, free-standing BP films and their performance in an all-solid-state supercapacitor device are demonstrated.  相似文献   

17.
Hybrid nanocarbon, comprised of a diamond core and a graphitic shell with a variable sp2‐/sp3‐carbon ratio, is controllably obtained through sequential annealing treatment (550–1300 °C) of nanodiamond. The formation of sp2 carbon increases with annealing temperature and the nanodiamond surface is reconstructed from amorphous into a well‐ordered, onion‐like carbon structure via an intermediate composite structure—a diamond core covered by a defective, curved graphene outer shell. Direct dehydrogenation of propane shows that the sp2‐/sp3‐nanocomposite exhibits superior catalytic performance to that of individual nanodiamond and graphitic nanocarbon. The optimum catalytic activity of the diamond/graphene composite depends on the maximum structural defectiveness and high chemical reactivity of the ketone groups. Ketone‐type functional groups anchored on the defects/vacancies are active for propene formation; nevertheless, once the oxygen functional groups are desorbed, the defects/vacancies alone might be active sites responsible for the C?H bond activation of propane.  相似文献   

18.
《中国化学快报》2022,33(10):4691-4694
Electrochemical reduction of CO2 to value-added chemicals holds promise for carbon utilization and renewable electricity storage. However, selective CO2 reduction to multi-carbon fuels remains a significant challenge. Here, we report that B/N-doped sp3/sp2 hybridized nanocarbon (BNHC), consisting of ultra-small nanoparticles with a sp3 carbon core covered by a sp2 carbon shell, is an efficient electrocatalyst for electrochemical reduction of CO2 to ethanol at relatively low overpotentials. CO2 reduction occurs with a Faradaic efficiency of 58.8%-69.1% for ethanol and acetate production at ?0.5 ~ ?0.6 V (vs. RHE), among which 51.6%-56.0% is for ethanol. The high selectivity for ethanol is due to the integrated effect of sp3/sp2 carbon and B/N doping. Both sp3 carbon and B/N doping contribute to enhanced ethanol production with sp2 carbon reducing the overpotential for CO2 reduction to ethanol.  相似文献   

19.
Buprofezin (2-tert-butylimino-3-isopropyl-5-phenyl-1,3,5-thiadiazinan-4-one) is identified as a commonly used chemical with satisfactory biological activities against sucking insect pests, but its disposal causes serious environmental problems. This pesticide was treated by an electrolysis system using a boron-doped diamond (BDD) as anode and platinum as cathode. A number of experiments were run on a laboratory scale and the results are presented. The chemical oxygen demand (COD) measurement during the processing permitted the evaluation of the kinetic of organic matter decay and the instantaneous current efficiency. Different operating conditions and factors affecting the treatment process including current density, conductive electrolyte, pH, concentration of buprofezin, and time of electrolysis were studied and optimized. The best obtained conditions for COD removal on the BDD anode to degrade buprofezin solutions (COD0 = 1,200 mg L?1) include operating at 60 mA cm?2 and 25 ± 3 °C. The high efficiency of this technology can be explained in terms of the direct electrooxidation at the BDD surface and the oxidation carried out by hydroxyl radicals (OH?) and other electro-generated oxidants (Cl?, ClO?).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号