首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion. Herein, we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties. Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67. After calcination in nitrogen atmosphere, the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved. The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous) cobalt-oxide deposits appear on the surface of graphitic carbons. The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree, large surface area and the large amount existence of Co–N active sites.  相似文献   

2.
3.
High efficiency, cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems. The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies. Herein, we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER) for alkaline electrolysis, which yields current density of 10 mA cm-2 at an overpotential of 215 mV in 0.1 M KOH electrolyte. The cataly...  相似文献   

4.
Carbon-supported Pt–Ni alloy nanoparticles with various compositions were prepared by a borohydride reduction method in anhydrous ethanol solvent. Here, we surveyed effect of thermally induced de-alloying on activity of the oxygen reduction reaction (ORR). Especially, changes in surface and bulk structures were investigated through electrochemical and spectroscopic measurements. The activity of as-prepared Pt–Ni alloy nanoparticles showed a monotonous dependence on Pt content. However, heat-treatment induced the phase separation between Pt and NiO and the resultant enhancement in ORR activity without significant increase in surface Pt concentration.  相似文献   

5.
Present studies concentrated on the preparation, characterization, and electroactivity of palladium–polypyrrole (Pd/PPY) catalysts for oxygen reduction reaction. In particular, the effect of Nafion ionomer on their electroactivity was evaluated. In all catalysts prepared by “water-in-oil” microemulsion method, the Pd nanoparticles of ca. 7 nm in size appeared regardless of the Pd content (ranging from 2 to 20 wt.%). For comparison, carbon black-supported (Vulcan XC-72) catalyst (20 wt.% Pd) was also synthesized. Coating of the Pd/PPY samples with Nafion ionomer reduced their surface area and porosity. Chemical interaction due to Nafion acid functionalities affected the N-state of pyrrole as well as electron state of Pd in the Pd/PPY catalysts. As a result, the contribution of more oxidized palladium (Pdδ+) increased. These interactions played an essential role in the electroactivity of Pd/PPY for oxygen reduction reaction. The increased amount of Nafion relative to that of PPY reduced limiting current density whereas the half-wave potential shifted to a more positive value and the fraction of hydrogen peroxide remarkably decreased.  相似文献   

6.
A simple, rapid, accurate, precise and sensitive spectrophotometric method for the determination of amlodipine besylate (ADB) in bulk sample and in dosage forms is described. The method is based on oxidation of the drug by potassium permanganate in acidic medium and determine the unreacted oxidant by measuring the decrease in absorbance for five different dyes; methylene blue (MB), acid blue 74 (AB), acid red 73 (AR), amaranth dye (AM) and acid orange 7 (AO) at a suitable λmax 663, 609, 511, 520, and 484 nm, respectively. Regression analysis of Beer's law plots showed good correlation in the concentration ranges 1.0–24, 0.9–22, 1.2–26, 0.9–12.8 and 1.0–14 μg ml?1, respectively. The apparent molar absorptivity, Sandell sensitivity, detection and quantitation limits were calculated. For more accurate results, Ringbom optimum concentration ranges were 1.2–22.4, 1.1–20, 1.4–24.5, 1.0–12.3 and 1.3–13.2 μg ml?1, respectively. Statistical treatment of the results reflects that the proposed procedures are precise, accurate and easily applicable for the determination of amlodipine besylate in pure form and in pharmaceutical preparations.  相似文献   

7.
Oxygen reduction reaction (ORR) is one of the most technologically relevant reactions. It occurs at the interface of the electrocatalyst and electrolyte, where oxygen reacts with protons and electrons to produce water. Because the electrocatalyst is dispersed on a high surface area support, morphological confinement becomes critical, as it dictates proton and oxygen transport. Furthermore, confinement is induced by ionomer, ionic liquids (ILs), or molecular additives, and their impact on electrocatalyst reactivity and transport properties is currently not well understood. We present an overview of electrostatics and mass transport–induced confinement and zoom in into ILs and molecular additives and try to unravel how local confinement induced by them impacts ORR.  相似文献   

8.
《Journal of Energy Chemistry》2017,26(6):1168-1173
Developing non-precious metal catalyst with high activity, good stability and low cost for electrocatalytic oxygen reduction reaction(ORR) is critical for the wide application of energy conversion system. Here, we developed a cost–effective synthetic strategy via silica assistance to obtain a novel Fe_3C/Fe–N_x–C(named as COPBP-PB-Fe-900-SiO_2) catalyst with effective active sites of Fe–N_xand Fe_3C from the rational design two-dimensional covalent organic polymer(COPBP-PB). The nitrogen-rich COP effectively promotes the formation of active Fe–N_x sites. Additionally, the silica not only can effectively suppress the formation of large Fe-based particles in the catalysts, but also increases the degree of carbonization of the catalyst.The as-prepared COPBP-PB-Fe-900-SiO_2 catalyst exhibits high electrocatalytic activity for ORR with a halfwave potential of 0.85 V vs. reversible hydrogen electrode(RHE), showing comparable activity as compared with the commercial Pt/C catalysts in alkaline media. Moreover, this catalyst also shows a high stability with a nearly constant onset potential and half-wave potential after 10,000 cycles. The present work is highly meaningful for developing ORR electrocatalysts toward wide applications.  相似文献   

9.
10.
《Journal of Energy Chemistry》2017,26(6):1181-1186
Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer and dicyandiamide as the pyrolysis precursor to synthesize nitrogen-doped carbon nanotube(N–CNT) encapsulating cobalt nanoparticles hybrid material. The carbon layers and specific surface area of N–CNT have a critical role to the ORR performance due to the exposed active sites, determined by the mass ratio of the two precursors. The optimum hybrid material exhibits high ORR activity and stability, as well as excellent performance and durability in zinc–air battery.  相似文献   

11.
The design of cost-effective, highly active catalysts for hydrogen energy production is a vital element in the societal pursuit of sustainable energy. Water electrolysis is one of the most convenient processes to produce high purity hydrogen. Cobalt-based catalysts are well-known electrocatalysts for oxygen evolution reaction(OER). In this article, all these merits indicate that the present cobalt nanocomposite is a promising electrocatalyst for OER. C–Co_3O_4-nanorods catalyst with nanorod structure was synthesized by hydrothermal treatment of CoCl_2·6H_2O/dextrose/urea mixture at 180 °C for 18 h and then calcined at400 °C for 3.5 h. The role of dextrose percentage in solution to achieve the uniform coating of carbon on the surface of Co_3O_4-nanorods has been demonstrated. The prepared materials were characterized by X-ray diffraction(XRD), X-ray photoelectron spectrum(XPS), field emission scanning electron microscopy(FE-SEM), high-resolution transmission electron microscopy(HR-TEM), and Brunauer–Emmett–Teller instrument(BET). Due to its unique morphology, the C–Co_3O_4-nanorods catalyst exhibited better activity than Co_3O_4-microplates catalyst for OER in 1 M KOH aqueous solution. The results showed a highly efficient, scalable, and low-cost method for developing highly active and stable OER electrocatalysts in alkaline solution.  相似文献   

12.
A facile method to prepare Pt–Ti intermetallic nanoparticles supported on carbon was developed. Starting from a commercial Pt/C catalyst, TiO2 layers were formed on the Pt/C then thermal annealing under a reducing condition successfully produced intermetallic Pt–Ti nanoparticles with an average size of 4.2 nm. The intermetallic Pt–Ti/C showed enhanced activity and durability for oxygen reduction reaction due to the change in electronic structure and less aggregation.  相似文献   

13.
Sulfur-containing compounds are responsible for much air pollution, and therefore eliminating these compounds is of importance. Herein, a hybrid organic–inorganic recyclable nanocatalyst (TBA-PW11Ni@PANI) was synthesized successfully to investigate its effects on the catalytic oxidative desulfurization (CODS) process of real gasoline/model fuel. To this end, the Keggin-based mono-lacunary polyoxometalate [PW11NiO39] was prepared and modified with quaternary cation tetrabutylammonium (TBA). Then, this was further immobilized on polyaniline (PANI) via the sol–gel method. The synthesized nanocomposite was characterized using various techniques. The high dispersion of polyoxometalate on PANI was confirmed. Also, it was found that the crystalline structure remained unaltered after immobilization. In addition, the effects of various parameters such as dosage and temperature on the CODS of model fuel in the presence of H2O2–acetic acid (1:2 v/v) were studied in detail. Moreover, the kinetics of the CODS process was also studied and a mechanism proposed. According to the results, TBA-PW11Ni@PANI showed an efficiency of up to 97% with 0.1 g at 35°C (optimum values) which implies its good catalytic functionality in the CODS process. Finally, the TBA-PW11Ni@PANI catalyst displayed long-term stability and good reusability after five runs.  相似文献   

14.
Palladium–polypyrrole nanocomposite materials with high electrocatalytic activity toward formaldehyde in an alkaline solution (methylene glycolate) have been synthesized via a one-step redox route. Key factors that have an effect on the sensor properties of palladium nanoparticles have been determined. It has been demonstrated for the first time that the emergence of not only the forward but also the reverse wave of formaldehyde oxidation on palladium particles is associated with the oxidation of methylene glycolate rather than intermediate species.  相似文献   

15.
Developing highly efficient, cost-saving, and durable multifunctional electrocatalysts for oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) continues to be a significant challenge in the energy field. In this work, we decide to prepare an unusual multifunctional electrocatalyst, such as icosahedral palladium nanocrystals (PdNCs) encapsulating on N–MoO2–Mo2C half-hollow nanotube (HHNT) heterointerface, using an in-situ chemical reaction and following sonic probe irradiation method. All the experiments demonstrate that special defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite can greatly improve the ORR activity (Eonset = 1.01 V and E1/2 = 0.90 V) with good stability, outstanding HER (η10 = 65 mV) and OER (η10 = 180 mV) performances than those of commercial precious electrocatalysts (Platinum on carbon [Pt/C] and ruthenium oxide [RuO2]). The overall water splitting electrolyzer fabricates by Pd/N–MoO2–Mo2C as both anode and cathode electrodes to achieve a current density of 10 Ma/cm2 at a cell voltage of 1.56 V, which surpasses the most recent reported electrocatalysts.  相似文献   

16.
Research on Chemical Intermediates - Palladium–Cobalt (Pd–Co) alloys with different atomic ratios were synthesized successfully by borohydride-assisted chemical reduction method....  相似文献   

17.
Alloy catalysts of Pt50Au50/CexC with various Ce additions (x) were prepared for the oxygen reduction reaction (ORR). The characterization of the alloy structures, surface species, and electro-catalytic activities of prepared alloy catalysts were performed by XRD, temperature-programmed reduction (TPR), and rotating disc electrode (RDE) technique, respectively. The ORR activity of Pt50Au50/C alloy catalyst with a promotion of 15% CeO2 was enhanced significantly in comparison to the commercial Pt/C catalyst within the mixed kinetic-diffusion control region. The addition of CeO2 decreased the particle sizes, increased the dispersion and enhanced the surface segregation of Pt which resulting in an alloy surface with a moderate oxophilicity on alloy catalysts.  相似文献   

18.
Ir–V nanoparticles supported on microstructure controlled carbon nanofibers (CNFs) or on carbon black, Vulcan XC-72 (XC-72), have been synthesized via chemical reduction, and the oxygen reduction reaction (ORR) properties of catalysts are investigated in this paper. The physico-chemical properties are characterized by high resolution transmission electron microscope (HRTEM), N2 physisorption and electrochemical analysis. HRTEM results show that the metal nanoparticles are separated on carbon support with well-controlled particle size, dispersity, and composition uniformity. Moreover, the metal nanoparticles on CNFs have a smaller size than those on XC-72. Cyclic voltammetric analysis reveals that Ir–V/CNFs exhibits a higher ORR activity than Ir–V/XC-72, and this may be associated with the smaller metal nanoparticles and the stronger metal-support interaction of Ir–V/CNFs. Linear sweep voltammetric analysis at different rotation rates proves that ORR on the Ir–V/CNFs electrode is a 4e? process.  相似文献   

19.
Water nucleophilic attack is an important step in water oxidation reactions, which have been widely studied using density functional theory (DFT). Nevertheless, a single-determinant DFT picture may be insufficient for a deeper insight into the process, in particular during the oxygen–oxygen bond formation. In this work, we use complete active space self-consistent field calculations and describe an approach for a complete active space analysis along a reaction pathway. This is applied to the water nucleophilic attack at a Ru-based catalyst, which has successfully been used for efficient water oxidation and in silico design of new water oxidation catalysts recently.  相似文献   

20.
Oxygen reduction reaction is a critical process at the cathode of proton-exchange membrane fuel cells and metal–air batteries. Carbon-based single metal atom nanocomposites have emerged as effective alternatives to state-of-the-art platinum catalysts, in which the electrocatalytic activity is attributed largely to the formation of metal–nitrogen coordination moieties (MNx) within the carbon matrix. In this review, we summarize recent progress in the studies of metal and nitrogen codoped carbon as single-atom catalysts toward oxygen reduction reaction within the context of the atomic configuration of the MNx active sites and topologic characteristics of the carbon skeletons and include a perspective of the design and engineering of the nanocomposites for further enhancement of the electrocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号