首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen evolution on Ti/IrO2 anodes has been studied in 1M HClO4 electrolyte using 18O labelling together with differential electrochemical mass spectrometry (DEMS) measurements.It has been shown that during successive cyclic voltammetric measurements in H2 18O containing electrolyte the amount of 16O2 (m/z = 32) decreases, with a concomitant increase of 18O16O (m/z = 34) after each cycle before reaching a steady state after four cycles. The obtained higher 16O2 concentration in the evolved oxygen during the first scans is because 16O from the IrO2 film contribute in the oxygen evolution reaction.Analysis of the experimental data has shown that the amount of lattice oxygen, which is involved in the oxygen exchange reaction, is in the order of 1% of the total IrO2 loading. This is an indication that only the outer surface of the oxide electrode participates in the oxygen evolution reaction.In a second series of experiments it has been demonstrated that oxygen evolution on Ir16O2 in H218O containing electrolyte result in the formation of Ir18O2.Consequently, we can conclude that the IrO2 layers participate in the oxygen evolution reaction in acid media at least to a several monolayer extend.  相似文献   

2.
The paper reports the three-phase (gas + aqueous liquid + hydrate) equilibrium pressure (p) versus temperature (T) data for a (O3 + O2 + CO2 + H2O) system and, for comparison, corresponding data for a (O2 + CO2 + H2O) system for the first time. These data cover the temperature range from (272 to 279) K, corresponding to pressures up to 4 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 mole ratios in the gas phase, which are approximately 1:9, 2:8, and 3:7, respectively. The mole fraction of ozone in the gas phase of the (O3 + O2 + CO2 + H2O) system was from ∼0.004 to ∼0.02. The modified pressure-search method, developed in our previous study [S. Muromachi, T. Nakajima, R. Ohmura, Y.H. Mori, Fluid Phase Equilib. 305 (2011) 145–151] for pT measurements in the presence of chemically unstable ozone, was applied, having been further modified for dealing with highly water-soluble CO2, for the (O3 + O2 + CO2 + H2O) system, while the conventional temperature-search method was used for the (O2 + CO2 + H2O) system. The measurement uncertainties (with 95% coverage) were ±0.11 K for T, ±6.0 kPa for p, and ±0.0015 for the mole fraction of each species in the gas phase. It was confirmed that, at a given CO2 fraction in the gas phase, p for the (O3 + O2 + CO2 + H2O) system was consistently lower than that for the (O2 + CO2 + H2O) system over the entire T range of the present measurements, indicating a preference of O3 to O2 in the uptake of guest-gas molecules into the cages of a structure I hydrate.  相似文献   

3.
Removal of acid gases such as CO2 and H2S from natural gas is essential for commercial, safety and environmental protection that demonstrate the importance of gas sweetening process. Ionic liquids (IL) have been highly demanded as a green solvent to remove acid gases from sour natural gas and capturing of CO2 from flue gases. In this work, the solubility of CO2 in 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) is measured at temperatures (303.15, 328.15, 343.15) K and pressure range of (0.1 to 3.9) MPa. Moreover, the experiments are carried out for simultaneous measurements of (CO2 + H2S) (70% + 30% on a mole basis) solubility in the same ionic liquid at T = (303.15, 323.15, 343.15) K and a pressure range of (0.1 to 2.2) MPa. To model the solubility of acid gases in IL, both physical and chemical equilibria are applied so that the (vapour + liquid) equilibrium calculation is carried out through Cubic-Plus-Association (CPA) EoS. The reaction equilibrium thermodynamic model is used in liquid phase so that the chemical reaction is taking place between IL and acid gasses. The Henry’s and reaction equilibrium constants are obtained though optimization of the solubility data. Using CPA EOS, the pure parameters of [bmim][acetate] are optimised and consequently using these parameters, gas partial pressure calculation is performed for the (CO2 + IL) and (CO2 + H2S + IL) systems. For the (CO2 + IL) system, the percent average absolute deviation (AAD%) of 4.83 is resulted and for the (H2S + CO2 + IL) system the values of 18.8 and 13.7 are obtained for H2S and CO2, respectively.  相似文献   

4.
《Fluid Phase Equilibria》2004,218(2):261-267
Gas solubility of carbon dioxide in an aqueous solution of 32.5 wt.% N-methyldiethanolamine and 12.5 wt.% diethanolamine with 4, 6, and 10 wt.% 2-amino-2-methyl-1-propanol has been measured, at 313.15, 343.15, and 393.15 K, over a range of pressure from 3 to 2000 kPa, using a chromatographic method for analysis of the liquid phase. The results of the gas solubility are given as the partial pressure of CO2 against its mole ratio α (mol CO2/mol alkanolamine) and its mole fraction at each temperature studied. The solubility of CO2 in all the systems studied decreases with an increase in temperature and increases with an increase in the partial pressure of CO2 at a given temperature and it is a function of the concentration of the mixture of alkanolamines in solution. The enthalpy of solution of CO2 has been calculated from the experimental solubility data.  相似文献   

5.
In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol · m?3 and those of PZ’s were (0.5, 1.0, and 1.5) kmol · m?3. The solubility data (CO2 loading in the amine solution) obtained were correlated as a function of CO2 partial pressure, system temperature, and amine composition via the modified Kent–Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO2 absorption into mixed aqueous solutions of TEA and PZ.  相似文献   

6.
Dissociative ionization of 1,4-bis(2,5-phenyloxazolyl)benzene (POPOP) molecule by electron impact in gaseous phase is studied. Potentials of appearance of some fragments of the molecule under study are determined from the experimentally measured dependences of ionization cross-section on the ionizing electron energy. A new ion with m/z = 144 [C9H6ON]+ is detected in the mass spectrum of the POPOP molecule, being complementary to the fragment with m/z = 220 [C15H10ON]+. The threshold of appearance of this ion is determined (Eap = 9.51 eV) as well as the first ionization potential of the POPOP molecule and fragment ion appearance potentials.  相似文献   

7.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

8.
A flow mixing calorimeter followed by a vibrating-tube densimeter has been used to measure excess molar enthalpies HmE and excess molar volumesVmE of {xC3H8 +  (1   x)SF6}. Measurements over a range of mole fractionsx have been made at the pressure p =  4.30 MPa at eight temperatures in the rangeT =  314.56 K to 373.91 K, in the liquid region at p =  3.75 MPa andT =  314.56 K, in the two phase region at p =  3.91 MPa andT =  328.18 K, and in the supercritical region at p =  5.0 MPa andT =  373.95 K. The measurements are compared with results from the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on{xCO2 +  (1   x)C2H6} ,{xCO2 +  (1   x)C2H4} and{xCO2 +  (1   x)SF6} reported previously.  相似文献   

9.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   

10.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

11.
A flow mixing calorimeter, followed by a vibrating tube densimeter, has been used to measure excess molar enthalpies HmEand excess molar volumesVmE of {xCO2 +  (1   x)SF6}. Measurements over a range of mole fraction x have been made at the temperatures T =  302.15 K and T =  305.65 K at the pressures (3.76, 5.20, 6.20, and 7.38) MPa. The lowest pressure 3.76 MPa is close to thecritical pressure of SF6 and the highest pressure 7.38 MPa is close to the critical pressure of CO 2. Measurements atx =  0.5 have been made over the pressure range (2.5 to 10.0) MPa at the temperature 301.95 K. Some of the measurements are very close to the critical locus of the mixture. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6} and{xCO2 +  (1   x)C2H4} . The equation was used to calculate residual enthalpies and residual volumes for the pure components and for the mixture, and inspection of the way these combine to give excess enthalpies and volumes assisted the interpretation of the pressure scan measurements.  相似文献   

12.
A flow mixing calorimeter and a vibrating-tube densimeter have been used to measure excess molar enthalpies HmE and excess molar volumes VmE of {xC2H6 +  (1   x)SF6 }. Measurements over a range of mole fractions x have been made at T =  305.65 K and T =  312.15 K and at the pressures (3.76, 4.32, 4.88 and 6.0) MPa. The pressure 3.76 MPa is close to the critical pressure of SF6, the pressure 4.88 MPa is close to the critical pressure of C2H6, and the pressure 4.32 MPa is midway between these values. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6 }, {xCO2 +  (1   x)C2H4 } and {xCO2 +  (1   x)SF6 }.  相似文献   

13.
We evaluated the CO2 adsorption capacity on granular and monolith carbonaceous materials, obtained by chemical activation of African palm stones with H3PO4, ZnCl2 and CaCl2 solutions at different concentrations. Textural properties of the synthesized materials were analyzed using N2 adsorption measurements at 77 K, the isotherms showed obtaining of materials microporous and moderately mesoporous, with surface areas between 161 and 1700 m2/g and pore volume between 0.09 and 0.64 cm3 g−1. Were observed different behaviors for textural parameters in each series, associated with the activating agent used in the preparation. The materials obtained have a CO2 adsorption capacity between ∼114 and 254 mg CO2/g, at atmospheric pressure and 273 K. It was established that the total amount of CO2 adsorbed under these experimental conditions is defined by the narrow micropore volume (Vn) and increased the total basicity of the materials.  相似文献   

14.
《Fluid Phase Equilibria》2005,235(2):196-200
This work contributes to the development of an enrichment process for antioxidant compounds in aqueous alcoholic extracts of boldo (Peumus boldus M.) leaves by using high-pressure CO2 as the solvent. Specifically we measured the high-pressure solubility (y2, molar fraction) of a selected bioactive compound in boldo leaves (boldine) in CO2 as a function of system temperature (298 K  T  333 K) and pressure (8 MPa  P  40 MPa). Experimental data was correlated by using a density-based model which is valid for solvent densities >607 kg/m3. Predicted solubility values are low (4 × 10−7  y2  6 × 10−5) but comparable with those of nitrogen-containing organic compounds with similar molecular weight (327.4 Da) and solubility parameter (28.3 MPa0.5 at 313 K) as boldine.  相似文献   

15.
《Polyhedron》2007,26(9-11):2247-2251
The reaction of Vo(CO)6 and representative quinones, A (A = benzoquinone, chloranil, 2,3-dicyano-1,4-naphthoquinone, and dihydroxy-1,4-benzoquinone), form materials of V(A)2 · zCH2Cl2 (z < 0.1) composition, which exhibits antiferromagnetic coupling and do not magnetically order above 5 K.  相似文献   

16.
In this paper, we present experimental results for excitation coefficients of krypton atoms to several Kr and Kr+ excited levels for E/N (electric field to gas particle number density ratio usually in units of Townsend, 1 Td = 10 21 V m2) values from 7 × 10 20 V m2 to above 1 × 10 17 V m2. The data have been obtained in two different parallel plate self-sustained Townsend discharge drift tubes. The spatial distribution of the emission intensities were recorded and then normalized to give excitation coefficients at the anode, by using the electron flux at this point. The values of these coefficients are placed on an absolute scale by using a standard tungsten ribbon lamp calibrated against a primary blackbody radiation standard. The ionization rates at different E/N are obtained from the spatial emission profiles.The data for atomic krypton levels 2p2, 2p3, 2p5, 2p6, 2p7, 2p8, 3p5 and 3p6 (in Paschen notation) were converted to excitation coefficients by using quenching coefficients from the literature. The emission coefficients of eight 4s24p4 (3P)5p levels of Kr+ have also been measured for E/N values from about 1 × 10 18 V m2 up to nearly 8 × 10 18 V m2.  相似文献   

17.
Solubility data of CO2 in aqueous N-methyldiethanolamine (MDEA) solutions of concentration (2.52, 3.36, and 4.28) kmol/m3 were obtained at temperatures (313, 323, and 343) K and partial pressures ranging from about (30 to 5000) kPa. A thermodynamic model based on extended Debye–Hückel theory was applied to predict and correlate of CO2 solubility in various aqueous amine solutions. The effect of piperazine (PZ) concentration on CO2 loading in MDEA solutions was determined at PZ concentration (0.36, 0.86, and 1.36) kmol/m3. Using experimental data in various temperatures the interaction parameters of activity coefficient model for these systems were determined. The results show the model consistency with experimental and literature data and PZ is beneficial to the CO2 loading. The comparison of results of this study with previous data work shows the wide range of CO2 loading considered in this work and the better agreement of model with experimental data. The average absolute relative deviation percent (δAAD) for all data points were 8.11%.  相似文献   

18.
This paper describes a chemical model that calculates (solid + liquid) equilibria in the {m1FeCl2 + m2FeCl3}(aq), {m1FeSO4 + m2Fe2(SO4)3}(aq), {m1NaCl + m2FeCl3}(aq), {m1Na2SO4 + m2FeSO4}(aq), {m1NaCl + m2FeCl2}(aq), {m1KCl + m2FeCl3}(aq), {m1K2SO4 + m2Fe2(SO4)3}(aq), {m1KCl + m2FeCl2}(aq), {m1K2SO4 + m2FeSO4}(aq), and {m1MgCl2 + m2FeCl2}(aq) systems, where m denotes molality at T=298.15 K. The Pitzer ion-interaction model has been used for thermodynamic analysis of the experimental activity data in binary FeCl2(aq) and FeCl3(aq) solutions, and ternary solubility data, presented in the literature. The thermodynamic functions needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherms have been plotted. The mixed solution model parameters {θ(MN) and ψ(MNX)} have been chosen on the basis of the compositions of saturated ternary solutions and data on the pure water solubility of the K2SO4 · FeSO4 · 6H2O double salt. The standard chemical potentials of four ferrous {FeCl2 · 4H2O, Na2SO4 · FeSO4 · 4H2O, K2SO4 · FeSO4 · 6H2O, and MgCl2 · FeCl2 · 8H2O} and three ferric {FeCl3 · 6H2O, 2KCl · FeCl3 · H2O, and 2K2SO4 · Fe2(SO4)3 · 14H2O} solid phases have been determined. Comparison of solubility predictions with experimental data not used in model parameterization is given. The component activities of the saturated {m1MgSO4 + m2FeSO4}(aq) and in the mixed crystalline phase were determined and the change of the molar Gibbs free energy of mixing ΔmixGm(s) of crystals was determined as a function of the solid phase composition. It is established that at T=298.15 K the mixed (Mg,Fe)SO4 · 7H2O and (Fe,Mg)SO4 · 7H2O crystals show small positive deviations from the ideal mixed crystals. Limitations of the {Fe(II) + Fe(III)} model due to data insufficiencies are discussed.  相似文献   

19.
Comprehensive (p, ρ, T) measurements on two binary mixtures (0.10 CO2 + 0.90 N2 and 0.15 CO2 + 0.85 N2) were carried out in the gas phase at seven isotherms between (250 and 400) K and pressures up to 20 MPa using a single sinker densimeter with magnetic suspension coupling. A total of 69 (p, ρ, T) data for the first mixture and 69 (p, ρ, T) data for the second are presented in this article. The uncertainty in density was estimated to be (0.02 to 0.15)%, while the uncertainty in temperature was 3.9 mK and the uncertainty in pressure was less than 0.015% (coverage factor k = 2). Experimental results were compared with densities calculated from the GERG equation of state and with data reported by other authors for similar mixtures. Results yielded that, while deviations between experimental data and values calculated from the GERG equation were lower than 0.05% in density for low pressures, the relative error at high pressures and low temperatures increased to about (0.2 to 0.3)%. The main aim of this work was to contribute to an accurate density data base for CO2/N2 mixtures and to check or improve equations of state existing for these binary mixtures.  相似文献   

20.
Some heterogeneous reactions of oxide ion exchange (carbonate ion dissociation and magnesium oxide dissolution) in the molten {KCl + LiCl} eutectic at temperatures of (873, 973 and 1073) K were studied using an electrochemical cell with an oxygen membrane electrode Pt(O2)|ZrO2(Y2O3). The dissociation constant of the CO32− was found to increase with increasing temperature: pK (873 K)=(2.39 ± 0.05); pK (973 K)=(1.81 ± 0.09); pK (1073 K)=(1.53 ± 0.08). Removal of CO2 from the gas above the melt allows the complete transformation of CO32− to O2−. pPMgO values decrease more from (6.99 ± 0.08) to (5.41 ± 0.04). The oxobasicity indices, pI(KCl+LiCl), were calculated from the solubility data to be 3.2 at 873 K, 3.4 at 973 K, and 3.6 at 1073 K. This trend suggests an increase in acidity with increasing temperature of {KCl + LiCl}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号