首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了纳米银(AgNPs)在氨基注入氧化铟锡(ITO)薄膜表面的吸附.通过氨基注入的疗法得到了氨基功能化的ITO表面(NH2/ITO),并将纳米银直接吸附在NH2/ITO上得到纳米银修饰NH2/ITO基体(AgNPs/NH2/ITO).使用傅里叶红外光谱、X射线光电子能谱、原子力显微镜、扫描电镜、紫外可见光谱和电化学方法对AgNPs/NH2/ITO制备过程进行了表征.结果显示纳米银可在NH2/ITO表面高密度地吸附,并且纳米银有良好的电化学活性.这种不借助于有机连接分子吸附纳米银的方法为制备纳米银修饰材料提供了新的选择.  相似文献   

2.
In this work, a sensitive electrochemical aptasensor for the detection of adenosine triphosphate (ATP) has been introduced. A simple and non-enzymatic signal amplification strategy is utilized using silver nanoparticle-decorated graphene oxide (AgNPs–GO) as a redox probe. The modified electrode surface was characterized by scanning electron microscopy, FTIR and UV–Vis spectroscopy, and electrochemical impedance spectroscopy. GO provides an excellent substrate for the presence of the large number of AgNPs, so the monitored oxidation signal of AgNPs has been amplified. ATP-specific DNA aptamer is split into two fragments (F1 & F2) in order to design a sandwich-type assay. For the construction of the sensor, the surface of a graphite screen-printed electrode is modified with electrodeposited gold nanoparticles followed by self-assembling a monolayer of 3-mercaptopropionic acid on the electrode surface. The first amino-labeled fragment, F1, is immobilized on the modified electrode via carbodiimide chemistry. The synthesized AgNPs–GO interacts with F1 via \(\pi{-}\pi\) stacking. In the presence of ATP, the second fragment of the aptamer, F2, forms an associated complex with the immobilized F1 and causes AgNPs–GO to leave the surface. Consequently, a remarkable decrease in the oxidation signal of the AgNPs is observed. The percentage of this decrease has been monitored as an analytical signal, which is proportional to ATP concentration, and delivers a linear response over the range of 10.0 (±0.6) to 850 (±5) nM with a detection limit of 5.0 (±0.2) nM.  相似文献   

3.
Glutathione (GSH), a common tripeptide, plays an essential role in a variety of cellular functions. GSH level is reported to be closely related to human health. In this study, we fabricate an ultrasensitive electrochemical biosensor for GSH quantification. DNA probes are firstly modified on the electrode surface and thymine-Hg2+-thymine is formed. Since GSH is able to chelate Hg2+ from the DNA mismatched sites effectively, which leads to DNA structural switching from hairpin to linear strand, rolling circle amplification (RCA) could be initiated with the released linear primer probe. The RCA product with multiple repeating sequences further captures numerous DNA modified silver nanoparticles (AgNPs) by the hybridization of complementary sequences. Stripping voltammetric responses of AgNPs are then detected to reveal GSH concentration. The linear detection range is from 0.1 pM to 10 nM and the limit of detection is 0.1 pM, which is lower than most current analytical methods. This method is also highly selective and functions well against a series of interferents. Additionally, the proposed method has been successfully utilized in human serum samples, which shows fairly good potential in clinical applications.  相似文献   

4.
张亚  邢艳  焦玉荣 《分析试验室》2021,40(3):270-274
将银纳米粒子(AgNPs)电沉积在碳纳米纤维(CNFs)修饰玻碳电极表面制备纳米银/碳纳米纤维修饰玻碳电极(AgNPs/CNFs/GCE).采用扫描电镜考察其表面形态,在K3[Fe(CN)6]-K4[Fe(CN)6]体系中用循环伏安法和电化学阻抗法研究AgNPs/CNFs/GCE的电化学行为.采用循环伏安法和方波伏安法...  相似文献   

5.
In this study, for the first time, the electro-polymerization of Direct blue15 (DB15), an azo dye, was carried out on the surface of ITO. Furthermore, the poly(DB15) surface was electrochemically decorated with Ag nanoparticles (AgNPs), and the fabricated AgNPs/PDB15 electrodes were examined as nitrate sensors. Compared to unmodified ITO electrode, the AgNPs/PDB15 electrode had greatly improved electrochemical response to nitrate reduction. The nitrate determination in a linear range from 1.0×10−5 mol L−1 to 2.27×10−3 mol L−1 was performed with a detection limit of 9.66 μM. The synthesized electrode is a promising sensor for the electrochemical detection of nitrate pollutants in water.  相似文献   

6.
建立了快速测定盐酸金霉素(CTC)的方法。通过NaBH4还原法制备纳米银(AgNPs)溶胶,并利用X射线衍射和紫外-可见光谱进行表征。将制备好的AgNPs滴涂到玻碳电极表面制备修饰电极(AgNPs/GCE),研究了CTC在AgNPs/GCE上的电化学行为及伏安法测定,优化了缓冲溶液和pH等检测条件。结果表明,CTC在pH 3.3的柠檬酸-NaOH-HCl缓冲溶液中检测效果最佳。CTC在AgNPs/GCE上发生2个电子和2个质子的不可逆电化学氧化反应,且反应受吸附控制。最佳条件下,CTC的氧化峰电流与其浓度呈现良好的线性关系,线性范围为0.5~100μmol/L,检出限为0.14μmol/L。该修饰电极可用于河水样品检测。  相似文献   

7.
Highly flexible graphene/poly(methylene blue)/AgNPs composite paper was successfully prepared for amperometric biosensing of NADH. For this purpose, a dispersion including graphene oxide (GO), methylene blue (MB) and silver nanoparticles (AgNPs) was prepared and GO/MB/AgNPs paper was acquired by vacuum‐filtration of this dispersion through a suitable membrane. After peeling it off from membrane, it was transformed to rGO/MB/AgNPs paper by performing reduction with hydriodic acid. In a three‐electrode cell, which is containing 0.1 M phosphate buffer solution (pH: 9.0), rGO/MB/AgNPs paper was used as working electrode and rGO/poly(MB)/AgNPs composite paper was generated by surface‐confined electropolymerization of MB using successive cyclic voltammetry approach in a suitable potential window. Characterization of this composite paper was carried out by using scanning electron microscopy, scanning tunneling microscopy, X‐ray photoelectron spectroscopy, powder X‐ray diffraction spectroscopy, Raman spectroscopy, four‐point probe conductivity measurement and cyclic voltammetry techniques. Flexible rGO/poly(MB)/AgNPs composite paper has demonstrated high sensitivity, wide linear range and low detection limit for amperometric quantification of NADH.  相似文献   

8.
This work presented a general way for in situ formation of citrate-capped silver nanoparticle (AgNP) aggregates as labels on an electrode surface. When the electrode surface was functionalised with a member of the o-diphenol family, 4-mercaptophenylboronic acid (MPBA) was anchored onto the electrode surface via a boronate ester covalent bond. The anchored MPBA captured AgNPs through AgS interaction. The resulting surface-tethered AgNPs could recruit more MPBA molecules and AgNPs through the formation of an AgS bond and the covalent interaction between the α-hydroxycarboxylate of the citrate and the boronate of the MPBA. This led to in situ formation of a network of AgNPs. The complexes formed between MBPA and citrate acid, as well as dopamine (a member of the o-diphenol family), were characterized by mass spectrometry. The MBPA-induced aggregation of citrate-capped AgNPs in solution was confirmed by UV–Vis spectrophotometry and transmission electron microscopy. The network of AgNPs formed on the diphenol-covered electrode surface was characterized by scanning electron microscopy. The electrochemical signal was measured based on the solid-state Ag/AgCl reaction of the AgNPs. To demonstrate the applications and analytical merits of our design, tyrosinase and protease (thrombin) were measured as model analytes. The proposed strategy is likely to lead to the development of sensors for the detection of other biomolecules.  相似文献   

9.
Column electrodes pretreated through oxidation–reduction cycles were traditionally used in electrochemical surface‐enhanced Raman scattering (SERS). In this study, a disposable screen‐printed carbon electrode was introduced into in situ electrochemical SERS through the electrodeposition of dendritic gold/silver nanoparticles (Au/AgNPs) onto the surface of the carbon working electrode to induce the SERS enhancement effect on the electrode. Scanning electron microscopy images showed that dendritic Au/AgNPs nanostructures could be fabricated under appropriate electrodeposition conditions and could present a minimum SERS factor of 4.25 × 105. Furthermore, the absorbed behavior of 4‐mercaptopyridine was investigated under different potentials. The adsorption configuration was inferred to transform from ‘vertical’ to ‘lying‐flat’. The proposed new electrode combined with a portable Raman spectrometer could be useful in the identifying products or intermediates during electrochemical synthesis or electrochemical catalysis in in situ electrochemical SERS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In the present study, we report the fabrication of silver nanoparticles (AgNPs) decorated on activated screen printed carbon electrode (ASPCE). The AgNPs were prepared by using Justicia glauca leaf extract as a reducing and stabilizing agent and the ASPCE was prepared by a simple electrochemical activation of screen printed carbon electrode (SPCE). The ASPCE/AgNPs shows a reversible electrochemical behaviour with enhanced response for DA than that of other modified SPCEs. Under optimum conditions, the electrochemical oxidation current response of DA is linear over the concentration range from 0.05 to 45.35 µM. The limit of detection is found as 0.017 µM with a high sensitivity of 7.85 µA µM?1 cm?2.  相似文献   

11.
Here, we report on the electrochemical detection of individual collisions between a conjugate consisting of silver nanoparticles (AgNPs) linked to conductive magnetic microbeads (cMμBs) via DNA hybridization and a magnetized electrode. The important result is that the presence of the magnetic field increases the flux of the conjugate to the electrode surface, and this in turn increases the collision frequency and improves the limit of detection (20 aM). In addition, the magnitude of the charge associated with the collisions is greatly enhanced in the presence of the magnetic field. The integration of DNA into the detection protocol potentially provides a means for using electrochemical collisions for applications in biological and chemical sensing.  相似文献   

12.
构建了一种高灵敏检测谷胱甘肽(GSH)和半胱氨酸(Cys)的新型电化学生物传感器. 先将富含T碱基的DNA1和DNA2探针分别修饰在金电极和纳米金颗粒(AuNPs)上, 再加入Hg2+, 通过形成T-Hg2+-T结构使AuNPs结合到金电极表面. 当加入GSH(或Cys)后, GSH(或Cys)可以竞争结合T-Hg2+-T结构中的Hg2+, 使AuNPs离开电极表面. 由于AuNPs上修饰的DNA探针能够静电吸附大量电活性物质六氨合钌(RuHex), 因此该过程可引起计时电量信号的显著变化, 据此实现了GSH(或Cys)的高灵敏检测. 该传感器的检出限达10 pmol/L, 比荧光法或比色法降低了2~3个数量级. 实验结果表明, 该传感器具有较好的选择性.  相似文献   

13.
Glucose concentration monitoring is important for the prevention, diagnosis and treatment of diabetes. In this work, a composite material of AgNPs/MOF‐74(Ni) was prepared for electrochemical determination of glucose. AgNPs/MOF‐74(Ni) was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical properties of the glassy carbon electrodes modified with the AgNPs/MOF‐74(Ni) composites were characterized by cyclic voltammetry (CV) and current‐time curve (I‐t curve) with three electrode system. The determination of glucose with the electrode modified by AgNPs/MOF‐74(Ni) has a linear range of 0.01~4 mM with the correlation coefficient (R2) of 0.994. The detection limit is 4.7 μM (S/N=3) and the sensitivity is 1.29 mA ? mM?1 ? cm?2. In addition, this sensing system possesses reasonable reproducibility and stability. The good performance of electrochemical determination for glucose is attributed to the concerted effect of silver nanoparticles and MOF‐74(Ni) on the promotion of glucose oxidation  相似文献   

14.
通过自组装方法将修饰有二茂铁基团的富T序列DNA分子(DNA-Fc)固定在金电极表面,得到了一种基于DNA修饰电极的电化学汞离子(Hg2+)传感器.当溶液中有Hg2+存在时,Hg2+可与修饰电极上DNA的T碱基发生较强的特异结合,形成T-Hg2+-T发卡结构,使DNA分子构象发生改变,其末端具有电化学活性的二茂铁基团远离电极表面,电化学响应随之发生变化.示差脉冲伏安法(DPV)结果显示:DNA末端二茂铁基团的还原峰在0.26V(vs饱和甘汞电极(SCE))附近,峰电流随溶液中Hg2+浓度的增加而降低;Hg2+浓度范围在0.1nmol·L-1-1μmol·L-1时,电流相对变化率与Hg2+浓度的对数呈现良好的线性关系.该修饰电极对Hg2+的检测限为0.1nmol·L-1,可作为痕量Hg2+检测的电化学生物传感器.干扰实验也表明,该传感器对Hg2+具有良好的特异性与灵敏度.  相似文献   

15.
利用标记二茂铁基团的DNA(T-DNA)分子作为信号探针, 基于端粒酶特异性延长其底物链(TS)所引发的链替代反应, 建立了一种检测端粒酶活性的电化学信号放大法. 将巯基化的发夹型DNA分子(H-DNA)通过金-硫键自组装于金电极表面, 辅助DNA(A-DNA)与二茂铁修饰的T-DNA部分互补杂交形成双链AT-DNA; 当端粒酶存在时, 可在TS的3′末端合成TTAGGG的重复序列; A-DNA与TS延长链杂交置换出T-DNA; T-DNA与发夹H-DNA杂交使得二茂铁靠近电极表面; 一条TS延长链可以释放出多条T-DNA, 将二茂铁富集到金电极表面, 从而实现信号放大检测端粒酶活性. HeLa细胞个数在5~100范围内与电流值成正比, 最低可检测5个HeLa细胞中端粒酶的活性. 因此, 本文建立了一种简单灵敏检测端粒酶活性的电化学方法.  相似文献   

16.
Selectively electrochemical conversion of CO2 into organic fuel using renewable electricity is one of the most sought‐after processes. In this paper, we report the electrochemical reduction of CO2 (CO2RR) on the nanoporous Ag electrodes made of compacted Ag nanoparticles (AgNPs), which were prepared by one‐step reduction in the water phase with or without the surfactant sodium dodecyl sulfate (SDS). The scanning electron microscope (SEM) characterizations show that the compacted Ag electrodes have the nanoporous morphology formed by stacking AgNPs. Compared with the nanoporous Ag electrode without SDS modification (C‐AgNPs), the SDS‐modified AgNPs electrode (C‐AgNPs‐SDS) is highly effective in improving selective CO production in a wide range of potentials (–0.69 V — –1.19 V, vs. RHE), with a Faradaic efficiency of 92.2% and a current density of –8.23 mA·cm–2 for CO production at –0.79 V (vs. RHE). C‐AgNPs‐SDS is also catalytically stable with only less than 7% deactivation after 8 h of continuous electrolysis.  相似文献   

17.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


18.
Won BY  Yoon HC  Park HG 《The Analyst》2008,133(1):100-104
The signal amplification technique of peptide nucleic acid (PNA)-based electrochemical DNA sensor was developed in a label-free and one-step method utilizing enzymatic catalysis. Electrochemical detection of DNA hybridization on a PNA-modified electrode is based on the change of surface charge caused by the hybridization of negatively charged DNA molecules. The negatively charged mediator, ferrocenedicarboxylic acid, cannot diffuse to the DNA hybridized electrode surface due to the charge repulsion with the hybridized DNA molecule while it can easily approach the neutral PNA-modified electrode surface without the hybridization. By employing glucose oxidase catalysis on this PNA-based electrochemical system, the oxidized mediator could be immediately reduced leading to greatly increased electrochemical signals. Using the enzymatic strategy, we successfully demonstrated its clinical utility by detecting one of the mutation sequences of the breast cancer susceptibility gene BRCA1 at a sample concentration lower than 10(-9) M. Furthermore, a single base-mismatched sample could be also discriminated from a perfectly matched sample.  相似文献   

19.
利用改进的Hummers法制备了氧化石墨烯(GO), 以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2, 4, 6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明, AgNPs/GO对TNP有较强的电催化活性, 在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆, 电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8 mol·cm-2, 在所研究电位下的速率常数为9.745×10-5 cm·s-1。在pH 6.8的磷酸缓冲液中, 当富集电位为-0.70 V, 富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7 mol·L-1范围内成良好线性关系, 相关系数为0.995 8, 检出限可达1.0×10-9 mol·L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测, 加标回收率在 97.6%~103.9%之间。  相似文献   

20.
Nuclease S1 can catalyze the nonspecific endo- and exonucleolytic cleavage of single-stranded DNA and RNA to yield nucleoside 5′-phosphates and 5′-phosphooligonucleotides. However, it cannot hydrolyze double-stranded DNA, double-stranded RNA, or DNA-RNA hybrid. Inspired by this specific property, a simple electrochemical method was developed for microRNA detection based on hybridization protection against nuclease S1 digestion. In the absence of hybridization process, the assembled probe DNA on the electrode surface can be easily digested by nuclease S1 and a strong electrochemical signal can be generated due to the decreased repulsive force towards the redox probe. However, after hybridization with target microRNA, the digestion activity of nuclease S1 is inhibited, which can lead to a weak electrochemical signal. Based on the change of the electrochemical signal, the detection of target microRNA-319a can be achieved. Under optimal experiment conditions, the electrochemical signal was proportional to microRNA-319a concentration from 1000 to 5 pM and the detection limit was 1.8 pM (S/N = 3). The developed method also showed high detection selectivity and reproducibility. Furthermore, the proposed method was successfully applied to assay the expression level of microRNA-319a in the leaves of rice seedlings after being incubated with different concentrations of 6-benzylaminopurine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号