首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiple metastable excited states provided by excited-state intramolecular proton transfer (ESIPT) molecules are beneficial to bring temperature-dependent and color-tunable long persistent luminescence (LPL). Meanwhile, ESIPT molecules are intrinsically suitable to be modulated as D-π-A structure to obtain both one/two-photon excitation and LPL emission simultaneously. Herein, we report the rational design of a dynamic CdII coordination polymer ( LIFM-106 ) from ESIPT ligand to achieve the above goals. By comparing LIFM-106 with the counterparts, we established a temperature-regulated competitive relationship between singlet excimer and triplet LPL emission. The optimization of ligand aggregation mode effectively boost the competitiveness of the latter. In result, LIFM-106 shows outstanding one/two-photon excited LPL performance with wide temperature range (100–380 K) and tunable color (green to red). The multichannel radiation process was further elucidated by transient absorption and theoretical calculations, benefiting for the application in anti-counterfeiting systems.  相似文献   

2.
Photoswitchable materials have attracted considerable attention in various fields. Developing excellent solid-state dual-mode photoswitches is an important but challenging task. Herein, we propose a new strategy to construct an excited-state intramolecular proton transfer (ESIPT) inspired photoswitch ( DiAH-pht ) that possesses aggregation-induced emission (AIE) features and displays a fast molecular isomerization process characterized by dual-mode behavior in the solid state. Mechanistic studies indicate that introduction of a bulky group can create a folded molecular conformation that provides adequate volume to facilitate photoisomerization and the enhanced ESIPT effect can boost the isomerization process. The feasibility of our strategy was further demonstrated by the activated photoisomerization performance of the Schiff base derivatives. Furthermore, DiAH-pht shows good performance in the fields of dual-mode information encryption and high-density data storage.  相似文献   

3.
Excited-state intramolecular proton transfer (ESIPT)-based solid luminescent materials with multiple hydrogen bond acceptors (HBAs) remain unexplored. Herein, we introduced a family of Janus-type ESIPT chromophores featuring distinctive hydrogen bond (H-bond) selectivity between competitive HBAs in a single molecule. Our investigations showed that the central hydroxyl group preferentially forms intramolecular H-bonds with imines in imine-modified 2-hydroxyphenyl benzothiazole (HBT) chromophores but tethers the benzothiazole moiety in hydrazone-modified HBT chromophores. Imine-derived HBTs generally exhibit higher fluorescence efficiency, while hydrazone-derived HBTs show a reduced overlap between the absorption and fluorescence bands. Quantum chemical calculations unveiled the molecular origins of the biased intramolecular H-bonds and their impact on the ESIPT process. This Janus-type ESIPT chromophore skeleton provides new opportunities for the design of solid luminescent materials.  相似文献   

4.
The 3-hydroxyflavone (3HF) and its derivatives are the classical objects in the studies of the mechanisms of excited-state intramolecular proton transfer (ESIPT) reaction due to very frequent observation of two separate bands in fluorescence emission belonging to reactant and reaction product. Those of them possessing electron-donor groups in 4' position find many applications as fluorescence sensors and probes because of their much higher sensitivity of their two-band ratiometric response to interactions with the environment. We report on the strong differences between 3HF and such derivatives in the behavior of their fluorescence spectra as a function of temperature. The thermal quenching changes the intensity ratio of two bands strongly for 3HF but does not change it for its studied derivatives. These results are interpreted in terms of different kinetic mechanisms of ESIPT reaction. In 3HF the equilibrium between the two excited-state species is not established prior to emission, so that the ESIPT reaction is under kinetic control, but in these derivatives the equilibrium is established faster than the emission and the reaction is under thermodynamic control. We suggest that the thermal perturbation of fluorescence spectra can be an extremely simple and convenient alternative to time-resolved spectroscopy for determining if slow irreversible or fast reversible ESIPT reaction gives rise to two bands of fluorescence spectra of similar magnitude. This is essential for the development of new wavelength-ratiometric fluorescence sensors and probes.  相似文献   

5.
New derivatives of 3-hydroxyquinolone (3HQ) with a fused benzene ring (3-hydroxybenzo[g]quinolones) have been synthesized. They display a remarkable red shift of their absorption spectrum in comparison with other 3HQ analogs allowing their excitation by common He/Cd and Ar-ion lasers. As a result of their irreversible excited-state intramolecular proton transfer (ESIPT) reaction, they display a dual fluorescence in a series of solvents of varying polarities, starting from toluene to methanol. The dual emission of these dyes correlates well with solvent H-bond basicity, which is connected with the effect of this solvent property on the kinetics of the ESIPT reaction. In addition to their red-shifted absorption and fluorescence, these new derivatives show a larger separation of their two emission bands and a more appropriate range of their intensity ratio than the previously synthesized 3HQs. These properties allow an improved ratiometric evaluation of the local H-bond basicity of unknown environments, which will favor future applications of the new dyes in polymer and biological sciences.  相似文献   

6.
The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).  相似文献   

7.
Fluorescence emission spectroscopy have been used to investigate the effects of electrolytes on the excited state intramolecular charge transfer (ICT) reaction in 4-(1-azetidinyl)benzonitrile (P4C) in very dilute to concentrated electrolyte solutions of ethyl acetate (EA), acetonitrile (AN) and ethanol (EtOH). In the limit of very low electrolyte concentrations, the reaction rate (=1/τ rxn, τ rxn being the reaction time) is found to decrease with increasing electrolyte concentration, the extent of decrease being the maximum in EA and the minimum in AN. At moderate to higher electrolyte concentrations, however, the rate increases upon further addition of electrolyte. The observed non-monotonic electrolyte concentration dependence of rate is believed to occur due to a novel interplay between friction and solvation experienced by the photo-excited reactant in solution. Moreover, the long time decay constant and amplitude of the bi-exponential decay of the time resolved fluorescence emission intensity also show a significant electrolyte concentration dependence which corroborates the relevant steady-state results. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

8.
Donor-substituted 2-(2'-arylsulfonamidophenyl)benzimidazoles undergo efficient excited-state intramolecular proton transfer (ESIPT) upon photoexcitation. The tautomer emission energy depends strongly on the substituent attachment position on the fluorophore pi-system. While substitution with a donor group in the para-position relative to the sulfonamide moiety yields an emission energy that is red-shifted relative to the unsubstituted fluorophore, fluorescence of the meta-substituted derivative appears blue-shifted. To elucidate the origin of the surprisingly divergent emission shifts, we performed detailed photophysical and quantum chemical studies with a series of methoxy- and pyrrole-substituted derivatives. The nature and contribution of solvent-solute interactions on the emission properties were analyzed on the basis of solvatochromic shift data using Onsager's reaction field model, Reichardt's empirical solvent polarity scale ET(30), as well as Kamlet-Abboud-Taft's empirical solvent index. The studies revealed that all ESIPT tautomers emit from a moderately polarized excited-state whose dipole moment is not strongly influenced by the donor-attachment position. Furthermore, the negative solvatochromic shift behavior was most pronounced in protic solvents presumably due to specific hydrogen-bonding interactions. The extrapolated gas-phase emission energies correlated qualitatively well with the trends in Stokes shifts, suggesting that solute-solvent interactions do not play a significant role in explaining the divergent emission energy shifts. Detailed quantum chemical calculations not only confirmed the moderately polarized nature of the ESIPT tautomers but also provided a rational for the observed emission shifts based on the differential change in the HOMO and LUMO energies. The results gained from this study should provide guidelines for tuning the emission properties of this class of ESIPT fluorophores with potential applications in analytical chemistry, biochemistry, or materials science.  相似文献   

9.
Absorption, fluorescence and fluorescence excitation spectroscopy and single photon counting time dependence spectrofluorimetry have been used to study the inter- and intramolecular excited state proton transfer (ESIPT) reactions in 2-hydroxy-9H-carbazole-1-carboxylic acid (2-HCA). Except in cyclohexane and water (pH 5) dual fluorescence is observed in rest of the solvents used. Normal Stokes shifted band seems to originate from 2-HCA-1-c and tautomer emission band from the tautomer formed by ESIPT in 2-HCA-1-c followed by structural reorganization. Both these emission band systems originate from the same ground state species. AM1 and CNDO/S-CI calculations have been carried out to establish the identity of the species. Different prototropic equilibria have been determined and discussed.  相似文献   

10.
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique “soft” inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.  相似文献   

11.
Internal Stark effect (or internal electrochromy) consists of the shift of light absorption and emission bands under the influence of electric field produced by proximal charges. In the studies of 3-hydroxyflavone (3HF) derivatives exhibiting the excited-state intramolecular proton transfer (ESIPT), we describe a new phenomenon - a very strong internal electrochromic modulation of this reaction. Fluorescence spectra of 3HF derivatives with charged groups attached to the chromophore from the opposite sides without pi-electronic conjugation, N-[(4'-diethylamino)-3-hydroxy-6-flavonyl]methyl-N,N-dimethyloctylammonium bromide and 4-[4-[4'-(3-hydroxyflavonyl)]piperazino]-1-(3-sulfopropyl)pyridinium, were compared with those of their neutral analogues in a series of representative solvents. The introduction of the proximal charge results in shifts of absorption spectrum and of both normal (N) and tautomer (T) emission bands, which correspond to initial and phototautomer states of the ESIPT reaction. The observed shifts are in accordance with the Stark effect theory. The direction of the shift depends on the position of the proximal charge with respect to the chromophore. The magnitude of the shift depends strongly on the solvent dielectric constant and on screening or unscreening produced by addition of the hydrophobic salts. In all of these cases, the spectral shifts are accompanied by extremely strong variations of relative intensities of N and T emission bands. This signifies a strong influence of internal electric field on the ESIPT reaction, which produces a dramatic change of emission color. Thus, the coupling of the initial electrochromic sensory signal with the ESIPT reaction allows for the breaking of the limit in magnitude of response inherent to common electrochromic dyes. This suggests a new principle of designing the ultrasensitive electrochromic two-wavelength fluorescence sensors and probes for analytical chemistry, macromolecular science, and cellular biology.  相似文献   

12.
The photophysics of a ratiometric fluorescent probe, N-[[4'- N, N-diethylamino-3-hydroxy-6-flavonyl]methyl]- N-methyl- N-(3-sulfopropyl)-1-dodecanaminium, inner salt (F2N12S), incorporated into phospholipid unilamellar vesicles is presented. The reconstructed time-resolved emission spectra (TRES) unravels a unique feature in the photophysics of this probe. TRES exhibit signatures of both an excited-state intramolecular proton transfer (ESIPT) and a dynamic Stokes shift associated with solvent relaxation in the lipid bilayer. The ESIPT is fast, being characterized by a risetime of approximately 30-40 ps that provides an equilibrium to be established between the excited normal (N*) and the ESIPT tautomer (T*) on a time scale of 100 ps. On the other hand, the solvent relaxation displays a bimodal decay kinetics with an average relaxation time of approximately 1 ns. The observed slow solvent relaxation dynamics likely embodies a response of nonspecific dipolar solvation coupled with formation of probe-water H-bonds as well as the relocation of the fluorophore in the lipid bilayer. Taking into account that ESIPT and solvent relaxation are governed by different physicochemical properties of the probe microenvironment, the present study provides a physical background for the multiparametric sensing of lipid bilayers using ESIPT based probes.  相似文献   

13.
A series of water-soluble 2-(2'-arylsulfonamidophenyl)benzimidazole derivatives containing electron-donating and accepting groups attached to various positions of the fluorophore pi-system has been synthesized and characterized in aqueous solution at 0.1 M ionic strength. The measured pK(a)'s for deprotonation of the sulfonamide group of monosubstituted derivatives range between 6.75 and 9.33 and follow closely Hammett's free energy relationship. In neutral aqueous buffer, all compounds undergo efficient excited-state intramolecular proton transfer (ESIPT) to yield a strongly Stokes-shifted fluorescence emission from the phototautomer. Upon deprotonation of the sulfonamide nitrogen at high pH, ESIPT is interrupted to yield a new, blue-shifted emission band. The peak absorption and emission energies were strongly influenced by the nature of the substituents and their attachment positions on the fluorophore pi-system. The fluorescence quantum yield of the ESIPT tautomers revealed a significant correlation with the observed Stokes shifts. The study provides valuable information regarding substituent effects on the photophysical properties of this class of ESIPT fluorophores in an aqueous environment and may offer guidelines for designing emission ratiometric pH or metal-cation sensors for biological applications.  相似文献   

14.
Excited‐state intramolecular proton transfer (ESIPT) is a particularly well known reaction that has been very little studied in magnetic environments. In this work, we report on the photophysical behavior of a known ESIPT dye of the benzothiazole class, when in solution with uncoated superparamagnetic iron oxide nanoparticles, and when grafted to silica‐coated iron oxide nanoparticles. Uncoated iron oxide nanoparticles promoted the fluorescence quenching of the ESIPT dye, resulting from collisions during the lifetime of the excited state. The assembly of iron oxide nanoparticles with a shell of silica provided recovery of the ESIPT emission, due to the isolation promoted by the silica shell. The silica network gives protection against the fluorescence quenching of the dye, allowing the nanoparticles to act as a bimodal (optical and magnetic) imaging contrast agent with a large Stokes shift.  相似文献   

15.
3-Hydroxyquinolones undergo excited-state intramolecular proton transfer (ESIPT), resulting in a dual emission highly sensitive to H-bonding perturbations. Here, we report on the strong effect of viscosity on the dual emission of 2-(2-thienyl)-3-hydroxyquinolone in protic solvents. An increase in viscosity significantly decreases the formation of the ESIPT product, thus changing dramatically the ratio of the two emission bands. Time-resolved studies suggest the presence of solvated species characterized by decay times close to the solvent relaxation times in viscous media. The intramolecular H bond in this species is probably disrupted by the solvent, and therefore, its ESIPT requires a reorganization of the solvation shell for restoring this intramolecular H bond. Thus, the ESIPT reaction of this dye and its dual emission depend on solvent relaxation rates and, therefore, on viscosity. The present results suggest a new physical principle for the fluorescence ratiometric measurement of local viscosity.  相似文献   

16.
合成了多种2-(2-氨基苯基)苯并噻唑(APBT)氨基氢原子被供电子及吸电子基团取代的衍生物, 并用紫外光谱﹑荧光光谱等方法和密度泛函理论(DFT)计算研究了溶剂效应和取代基效应对衍生物的光谱性质及激发态分子内质子转移(ESIPT)的影响规律. 结果表明, 相比于非极性溶剂环己烷, 随溶剂极性的增加及APBT-溶剂分子间氢键的形成, APBT的紫外-可见最大吸收峰和荧光最大发射峰均发生了一定程度的红移, 并对APBT的ESIPT产生了影响. 在APBT分子的氨基氮原子上引入不同的吸电子或斥电子取代基, 对氮原子的电荷性质有较大的影响. 在环己烷溶剂中, 甲基取代后的APBT仅有单重荧光发射峰, 体系未发生ESIPT过程; 而COCH2Cl等吸电子基团能促进APBT的ESIPT, 其荧光发射光谱出现了明显的双重峰, 表明体系发生了激发态分子内质子转移反应. 量子化学的理论计算较好地验证了光谱实验结果.  相似文献   

17.
18.
Functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)(2)) exhibit relatively intense fluorescence from the relaxed excited state formed by excited-state intramolecular proton transfer (ESIPT). Bromo functionalization of (BP(OH)(2)) species followed by palladium(0)-catalyzed reactions allows the connection (via alkyne tethers) of functional groups, such as the singlet-emitter diazaboraindacene (bodipy) group or a chelating module (terpyridine; terpy). The X-ray structure of the terpy-based compound confirms the planarity of the 3,3'-dihydroxy-bipyridine unit. The new dyes exhibit relatively intense emission on the nanosecond timescale when in fluid solution, in the solid state at 298 K, and in rigid glasses at 77 K. In some cases, the excitation wavelength luminescence was observed and attributed to 1) inefficiency of the ESIPT process in particular compounds when not enough vibrational energy is introduced in the Franck-Condon state, which is populated by direct light excitation or 2) the presence of an additional excited state that deactivates to the ground state without undergoing the ESIPT process. For some selected species, the effect of the addition of zinc salts on the absorption and luminescence spectra was investigated. In particular, significant fluorescence changes were observed as a consequence of probable consecutive formation of a 1:1 and 1:2 molecular ratio of ligand/zinc adducts owing to coordination of Zn(II) ions by the bipyridyldiol moieties, except when an additional terpyridine subunit is present. In fact, this latter species preferentially coordinates to the Zn(II) ion in a 1:1 molecular ratio and further inhibits Zn(II) interaction. In the hybrid Bodipy/BP(OH)(2) species, complete energy transfer from the BP(OH)(2) to the bodipy fluorophore occurs, leading to exclusive emission from the lowest-lying bodipy subunit.  相似文献   

19.
A few of excited state intramolecular proton transfer (ESIPT) compounds have been discovered for their aggregation induced emission enhancement (AIEE). To understand the AIEE mechanism, an ESIPT compound BTHPB (N-(4-(benzo[d]thiazol-2-yl)-3-hydroxyphenyl)benzamide) with simple structure was designed and synthesized. BTHPB showed apparent AIEE property and the emission efficiency was observed as high as 0.27 in the aggregates. On the basis of viscochromism experiments and calculations employing the linear coupling model, the restriction of the rotation between the two subunits taken place in ESIPT was considered as the main factor for the AIEE. The micro- and femtosecond transient absorption experiments offered evidence for the considerations. Additionally, we also observed a negative effect of aggregation on the fluorescence emission in the system. So the AIEE of ESIPT compound BTHPB originated from the combination effects of positive and negative factors induced by the aggregation.  相似文献   

20.
3-Hydroxyquinolones (3HQs), similarly to their 3-hydroxychromone analogs, undergo excited state intramolecular proton transfer (ESIPT) resulting in dual emission. In the ground state, 2-phenyl-3HQ derivatives are not flat due to a steric hindrance between the 2-phenyl group and the 3-OH group that participates in the ESIPT reaction. To study the effect of this steric hindrance on the ESIPT reaction, a number of 3HQ derivatives have been synthesized and characterized in different organic solvents by steady-state and time-resolved fluorescence techniques. According to our results, 2-phenyl-3HQ derivatives undergo much faster ESIPT (by nearly 1 order of magnitude) than their 2-methyl-3HQ analogs. Moreover, 1-methyl-2-phenyl-3HQ having a strongly twisted 2-phenyl group undergoes a two- to three-fold slower ESIPT compared to 2-phenyl-3HQ. These results suggest that the flatter conformation of 2-phenyl-3HQ, which allows a close proximity of the 2-phenyl and 3-OH groups, favors a fast ESIPT reaction. The absorption and fluorescence spectra of the 3HQ derivatives additionally confirm that the steric rather than the electronic effect of the 2-phenyl group is responsible for the faster ESIPT reaction. Based on the spectroscopic studies and quantum chemical calculations, we suggest that the 2-phenyl group decreases the rotational freedom of its proximal 3-OH group in the more planar conformation of 2-phenyl-3HQ. As a result, the conformations of 3HQ, where the 3-OH group orients to form an intramolecular H-bond with the 4-carbonyl group, are favored over those with a disrupted intramolecular H-bond. Therefore, the 2-phenyl group sterically favors the intramolecular H-bond and thus accelerates the ESIPT reaction. This conclusion provides a new understanding of the ESIPT process in 3-hydroxyquinolones and related systems and suggests new possibilities for the design of ESIPT based molecular sensors and switchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号