首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potentiometric response characteristics of zinc ion selective PVC-based membrane electrode employing 1,12,14-triaza-5,8-dioxo-3(4),9(10)-dibenzoyl-1,12,14-triene as an inophore was investigated. The proposed electrode exhibits a Nernstian behavior with a slope of 29.2 ± 0.4 mV per decade with a working concentration range of 1.3 × 10?7–1.0 × 10?1 mol L?1 and a detection limit of 1.0 × 10?8 mol L?1. The membrane having the composition as TDODBCPT:O-NPOE:PVC:OA; 7:57:30:6 wt.% exhibits the best results. It has a fast response time of 7 s and can be used for at least 100 days without any considerable divergence in potential. The proposed electrode show good discrimination of Zn2+ ion from diverse ions. The potential response remains constant over a pH range of 3.5–9.2. The electrode found well work under laboratory conditions. The proposed sensor directly used for determination of zinc ions in human hair sample, wastewater and an indicator electrode with EDTA titration.  相似文献   

2.
The effect of electrochemically ageing hydrous nickel oxide films via slow repetitive potential multi-cycling across the main nickel (II/III) redox peak was investigated in an aqueous base environment using cyclic voltammetry and steady state polarisation curves in the oxygen evolution reaction (OER) region. Similarities between hydrous nickel oxide films and electroprecipitated ‘battery type’ nickel oxide were shown due to their similar change in redox and oxygen evolving properties as a result of film ageing. This ageing method was found to significantly enhance the OER performance of the hydrous nickel oxide electrode with the OER overpotential decreasing by 60 ± 2 mV and experiencing a 10 fold increase in OER rate for a fixed overpotential over that of an un-aged electrode. The OER turnover frequency for an aged electrode was found to be 1.16 ± 0.07 s 1 in comparison to 0.05 ± 0.003 s 1 for a hydrous nickel oxide electrode not subjected to ageing.  相似文献   

3.
We have explored a new and facile method for the fabrication of metal nanoparticles on the electrode surface. The approach for fabricating metal nanoparticles was carried out by two steps consisting of ion-exchange in nafion film coated on the electrode and subsequent reduction of metal ions to metallic nanoparticles by electrochemical method. The results of characterization by TEM show that metal nanoparticles were nearly monodispersed in the whole nafion film. The average diameters of Cu, Co and Ni nanoparticles were statistically measured to be 5.1 nm ± 0.2 nm, 4.6 nm ± 0.2 nm and 4.7 nm ± 0.2 nm, respectively. The amount of metal nanoparticles can be readily controlled by the amount of nafion coated on the electrode. By performing the H2O2 reduction at the obtained Cu nanoparticles, the high electrocatalytic activity of metal nanoparticles fabricated has been confirmed.  相似文献   

4.
The mean activity coefficients of NaCl in (sodium chloride  +  sodium bicarbonate  +  water) were determined experimentally in the temperature range 293.15 K to 308.15 K at four NaHCO3molality fractions (0.1, 0.3, 0.5, and 0.7). The measurements were made with an electrochemical cell, using a Na + glass ion-selective electrode and a Cl  solid-state ion-selective electrode. The experimental values reported by Butler and Huston are found to be higher than those calculated from the Pitzer equation using the existing parameters while the experimental results of this work are close to the calculated values, up to an NaHCO3molality fraction of 0.5. At the NaHCO3molality fraction of 0.7, the experimental data are much lower than the calculated values, implying that the interference of HCO3  on the Na + glass ion-selective electrode can only be neglected up to a molality fraction of NaHCO3of 0.5, an observation which is consistent with that of Butler and Huston.  相似文献   

5.
In the present work, a more sensitive and conveniently usable electrode sensor for a trace analysis of heavy metal was developed by using Bi nanopowder synthesized by levitational gas condensation (LGC) method. It was observed from the TEM image that the Bi nanopowder is spherical in shape with a size of nearly 50 nm. The XRD pattern revealed intense peaks which can be indexed as a rhombohedral structure of Bi without any other diffraction peaks corresponding to an oxide or an impurity. This indicates that the resulting nanopowder synthesized by the LGC method is a highly crystallized Bi with a high purity. The square wave anodic stripping voltammograms (SWASV), experimentally measured for the Bi nanopowder electrode, showed well-defined and highly reproducible electrochemical responses relating to the stripping of Cd and Pb. The detection limit of the electrode was estimated to be 0.15 μg/l and 0.07 μg/l for Cd and Zn, respectively, on the basis of the signal-to-noise characteristics (S/N = 3) of the response for the 1.0 μg/l solution under a 10 min accumulation.  相似文献   

6.
Zirconium(IV) phosphosulphosalicylate, a cation exchanger was synthesized by mixing zirconium oxychloride to a mixture of 5-sulphosalicylic acid and phosphoric acid. The material showed good efficiency for the preparation of an ion-selective membrane electrode. The membrane was characterized affinity for Pb(II) ions. Due to its Pb(II) selective nature, the ion-exchanger was used as an electroactive by XRD and SEM analysis. The electrode responds to Pb(II) ions in a linear range from 1 × 10−5 to 1 × 10−1 M with a slope of 43.8 mV per decade change in concentration with detection limit of 4.78 × 10−6 M. The life span of electrode was found to be 90 days. The proposed electrode showed satisfactory performance over a pH range of 4.0–6.5, with a fast response time of 15 s. The sensor has been applied to the determination of Pb(II) ions in water samples of different origins. It has also been used as indicator electrode in potentiometric titration of Pb(II) ion with EDTA.  相似文献   

7.
It was found that the copolymer poly(aniline-co-o-aminophenol) (PANOA) can strongly catalyze the reduction of arsenate in a NaCl solution, which was proved by cyclic voltammetry and the determination of activation energy. On the basis of the electrocatalytic reduction of arsenate, the PANOA copolymer was used as a probe to determine directly arsenate. The electrocatalytic activity of the PANOA electrode toward As(V) reduction strongly depended on the pH and the applied potential. Under the optimal conditions, the PANOA electrode can be used to determine directly As(V) concentration in a wide linear range (n = 19) of 0.949 and 495 μM with a correlation coefficient of 0.995 and a limit of detection of 0.495 μM. The sensitivity of the electrode was 0.192 μA μM?1 cm?2. The PANOA electrode had the good storage stability and a less negative operation potential of ?0.15 V (vs. SCE).  相似文献   

8.
In this communication, a hydrogen peroxide (H2O2) sensor based on self-assembled Prussian Blue (PB) modified electrode was reported. Thin film of PB was deposited on the electrode by self-assembly process including multiple sequential adsorption of ferric ions and hexacyanoferrate ions. The as-prepared PB modified electrode displayed sufficient stability for practical sensing application. At an applied potential of ?0.05 V vs. Ag/AgCl (sat. KCl), PB modified electrode with 30 layers exhibited a linear dependence on H2O2 concentration in the range of 1 × 10?6–4 × 10?4 M (r = 0.9998) with a sensitivity of 625 mA M?1 cm?2. It was found that the sensitivity of H2O2 sensors could be well controlled by adjusting the number of deposition cycles for PB preparation. This work demonstrates the feasibility of self-assembled PB modified electrode in sensing application, and provides an effective approach to control the sensitivity of PB-based amperometric biosensors.  相似文献   

9.
The bismuth nanosheets grown on carbon fiber cloth were designed. For sodium-ion batteries, the Bi/CFC electrode exhibited a high reversible capacity of 350 and 240 mAh g 1 after 300 cycles at 50 and 200 mA g 1, as well as a good rate capability. Besides, the electrode displayed two flat potential profiles during the charge/discharge process. The results suggest that the Bi/CFC electrode has excellent potential as an anode for sodium-ion batteries.  相似文献   

10.
Direct electrochemistry of hemoglobin (Hb) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE). CILE was immersed in a solution containing Hb and ionic liquid, octylpyridinium chloride ([OcPy][Cl]), to directly immobilize Hb on CILE. Cyclic voltammetry of modified electrode exhibited quasi-reversible peaks corresponding to Hb. The oxidation and reduction peak potentials of immobilized Hb in acetate buffer solution, pH 5.0 and at a scan rate of 0.1 V s−1 were obtained at about –150 mV and –290 mV, respectively. The average surface coverage of the electroactive Hb adsorbed on the electrode surface was calculated as 8.4 × 10−11 mol cm−2. Hb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards oxygen, hydrogen peroxide and nitrite. Hydrogen peroxide can be determined in the range of 1.0 × 10−4–5.0 × 10−3 M.  相似文献   

11.
Electrode fouling is a major challenge for the long term use of sensors in real samples as it leads to the decay of the electroanalytical signal and is often caused by the formation of an inhibiting layer formed by biomolecules. We demonstrate here that ordered and vertically aligned mesoporous silica generated at the surface of an indium tin oxide electrode by electrochemically assisted self-assembly act as a molecular sieve and a protective layer for the electrode surface. They indeed prevent the adsorption of size excluded large undesired molecules (e.g. haemoglobin) while allowing the detection of small redox active molecules likely to reach the electrode surface through the film (e.g. propranolol) with almost no loss of sensitivity. At a bare electrode, the oxidation of propranolol is completely inhibited in the presence of 5 μM haemoglobin. At a modified electrode, the sensitivity for propranolol in the absence of haemoglobin is (72.8 ± 2.9) mA mol 1 (R2 = 0.992, N = 7) and it remains similar in the presence of 5 μM haemoglobin with a value of (67.4 ± 7.2) mA mol 1 (R2 = 0.992, N = 7).  相似文献   

12.
In this study, a combined pH microelectrode has been developed consisting of an indicator electrode made of IrO2 prepared using the polymeric precursor method and deposited in a platinum microwire. This electrode was mounted inside a stainless steel needle, the external surface of which was painted with conductive silver ink which is used as reference electrode. This device was compared with a conventional glass electrode, and the results presented linear behavior in the pH range from 2.0 to 12.5, in Na+ and K+ solutions, exceeding glass electrodes in the alkaline range. The sensitivity was 56.9 ± 0.2 mV pH? 1 and using ANOVA test we conclude that the electrode is not sensitive to the presence of alkaline cations such as Li+, Na+ or K+. Finally, the response time (t95) was 4.9 to 9.0 s depending on the solution pH. The combined pH microelectrode can be used several times and, after three years, continues to have a response similar to that of a freshly produced one.  相似文献   

13.
The heat capacities and the enthalpies of phase transitions of cyclohexyl esters (formate, acetate, butyrate, and valerate) in the condensed state between T =  (5 and 320) K were measured in a vacuum adiabatic calorimeter. It was found that all liquid compounds were supercooled by cooling them fromT =  300 K at a rate of (0.02 to 0.03)K · s  1and formed glasses. Crystalline phases were obtained for all esters and the residual entropies of glasses at T   0 were evaluated. The glass transition temperatures and the heat capacity jumps accompanying the glass transitions, as well as the thermodynamic parameters of fusion of crystalline phases, were determined for all the esters. The molar thermodynamic functions of the investigated compounds in the crystalline, liquid, supercooled liquid, and glassy states were obtained. The regular changes of some thermodynamic properties in the series of cyclohexyl esters are discussed.  相似文献   

14.
A new PVC membrane based strontium(II) ion-selective electrode has been constructed using acetophenone semicarbazone as a neutral carrier. The sensor exhibits a Nerstian response for strontium(II) ion over a wide concentration range 1.0 × 10−2–1.0 × 10−7 M with the slope of 29.4 mV/per decade. The limit of detection was 2.7 × 10−8 M. It was relatively fast response time (<10 s for concentration ⩾1.0 × 10−3 and <15 s for concentration of ⩾1.0 × 10−6 M) and can be used for 8 months without any considerable divergence in potentials. The proposed sensor revealed relatively good selectivity and high sensitivity for strontium(II) over a mono, di, trivalent cation and can be used in a pH range of 2.5–10.5. It was also successfully used as an indicator electrode in potentiometer titration and in the analysis of concentration in various real samples.  相似文献   

15.
Changes in microbial fuel cell (MFC) architecture, materials, and solution chemistry can be used to increase power generation by microbial fuel cells (MFCs). It is shown here that using a phosphate buffer to increase solution conductivity, and ammonia gas treatment of a carbon cloth anode substantially increased the surface charge of the electrode (from 0.38 to 3.99 meq m−2), and improved MFC performance. Power increased to 1640 mW m−2 (96 W m−3) using a phosphate buffer, and further to 1970 mW m−2 (115 W m−3) using an ammonia-treated electrode. The combined effects of these two treatments boosted power production by 48% compared to previous results using this air-cathode MFC. In addition, the start up time of an MFC was reduced by 50%.  相似文献   

16.
Manganese(II) complex of (E)-2-(hydroxyl-5-methoxybenzylideneamino) phenol was synthesized and used as a suitable Mn(II) – selective membrane in PVC matrix. The plasticized membrane sensor exhibits a nersian response for Mn(II) ions over a wide concentration range of 6 × 10?6–2 × 10?2 M with slope of 29 ± 1 mV per decade. It has a response time of <11 s and can be used for 2 months without any measurable divergence in potential. The response of the proposed sensor is independent of pH between 4 and 9.5. The proposed sensor shows a fairly good discriminating ability towards Mn(II) in comparison with some hard and soft metals. The electrode was used in the determination of Mn(II) in aqueous solutions and as an indicator electrode in potentiometer titration of manganese ions against EDTA.  相似文献   

17.
A novel nitrogen doped graphene fiber (NGF) was fabricated via a simple and facile wet-spinning strategy followed by annealing at high temperature, which can be applied as a remarkable electrode material. The NGF microelectrode shows good sensitivity and selectivity for the detection of dopamine with a wide linear response in the range of 0.1 μM to 80 μM, with the detection limit of 30 nM and an ultrahigh sensitivity of 22.08 μA μM 1 cm 2. Such high performance enables the NGF to be a prominent material in the branch of electrochemical analysis.  相似文献   

18.
Amperometric biosensing of glutamate using nanobiocomposite derived from multiwall carbon nanotube (CNT), biopolymer chitosan (CHIT), redox mediator meldola’s blue (MDB) and glutamate dehydrogenase (GlDH) is described. The CNT composite electrode shows a reversible voltammetric response for the redox reaction of MDB at −0.15 V; the composite electrode efficiently mediates the oxidation of NADH at −0.07 V, which is 630 mV less positive than that on an unmodified glassy carbon (GC) electrode. The CNTs in the composite electrode facilitates the mediated electron transfer for the oxidation of NADH. The CNT composite electrode is highly sensitive (5.9 ± 1.52 nA/μM) towards NADH and it could detect as low as 0.5 μM of NADH in neutral pH. The CNT composite electrode is highly stable and does not undergo deactivation by the oxidation products. The electrode does not suffer from the interference due to other anionic electroactive compounds such as ascorbate (AA) and urate (UA). Separate voltammetric peaks have been observed for NADH, AA and UA, allowing the individual or simultaneous determination of these bioanalytes. The glutamate biosensor was developed by combining the electrocatalytic activity of the composite film and GlDH. The enzymatically generated NADH was electrocatalytically detected using the biocomposite electrode. Glutamate has been successfully detected at −0.1 V without any interference. The biosensor is highly sensitive, stable and shows linear response. The sensitivity and the limit of detection of the biosensor was 0.71 ± 0.08 nA/μM and 2 μM, respectively.  相似文献   

19.
A novel strategy based on the Ugi multicomponent reaction was employed for immobilizing horseradish peroxidase on sodium alginate-coated gold electrode. The electrode was employed for constructing an amperometric biosensor device using 1 mM hydroquinone as electrochemical mediator. The electrode showed linear response (poised at −300 mV vs Ag/AgCl) toward H2O2 concentration between 70 μM and 8.8 mM at pH 7.0. The biosensor reached 95% of steady-state current in about 12 s and its sensitivity was 33.8 mA/M cm2. The electrode retained full initial activity after 30 days of storage at 4 °C in 50 mM sodium phosphate buffer, pH 7.0.  相似文献   

20.
Xathine oxidase was chemically modified with β-cyclodextrin-branched carboxymethylcellulose and further supramolecularly immobilized on a gold electrode, previously coated with a monolayer of 1-adamantanyl residues. The electrode was employed for constructing an amperometric biosensor device, which showed linear response (poised at +700 mV vs. Ag/AgCl) toward xanthine concentration between 300 μM and 10.4 mM at pH 7.0. The biosensor reached 95% of steady-state current in about 14 s and its sensitivity was 8.2 mA/M cm2. The enzyme electrode retained 93% of its initial activity after 3 weeks of storage at 4 °C in 50 mM sodium phosphate buffer, pH 7.0. The supramolecular nature of the immobilization approach was confirmed by cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号