首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary: Temperature rising elution fractionation (TREF) and crystallization analysis fractionation (CRYSTAF) fractionate semicrystalline polymers according to their crystallizabilities from dilute solution and have been widely used to measure the CCD of LLDPE. A new fractionation technique, known as crystallization elution fractionation (CEF), has been developed recently. The main difference between CEF and TREF and CRYSTAF is that the crystallization cycle in CEF is performed dynamically under solvent flow in a long column that contains an inert support material. In this paper, several metallocene-LLDPE resins have been analyzed by CEF to investigate the effect of cooling cycle parameters, comonomer fraction, polymer molecular weight, and blend cocrystallization on the fractionation. This new technique can be used to obtain CCDs with better resolution and in shorter times than TREF and CRYSTAF.  相似文献   

2.
Temperature rising elution fractionation (TREF) fractionates polymer chains with respect to their crystallizability, independently of molecular weight effects. In order to achieve a good fractionation, TREF requires a time‐consuming polymer deposition step over an inert support before the elution step. A single‐step crystallization fractionation method has been developed recently,1,2 Crystallization Analysis Fractionation (CRYSTAF), in which the chemical composition (or short chain branching) distribution of olefin copolymers can be measured by monitoring on‐line polymer concentration in solution at decreasing temperatures. For the present experimental investigation, a CRYSTAF‐prototype has been assembled and used to fractionate several linear low‐density polyethylene (LLDPE) samples. These results were compared to the ones measured by the commercial CRYSTAF apparatus from Polymer ChAR. Additionally, CRYSTAF results from Polymer ChAR were compared to analytical TREF results. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 539–552, 1999  相似文献   

3.
Crystallization analysis fractionation (CRYSTAF) is an analytical technique for determining the distribution of chain crystallizabilities of semicrystalline polymers. After only approximately a decade since it was developed, CRYSTAF has become one of the most important characterization techniques in polyolefin characterization laboratories because it provides fast and crucial information required for the proper understanding of polymerization mechanisms and structure–property relationships. In the polyolefin industry, it has been established as an indispensable tool for product development and product quality monitoring. This highlight article covers basic operation procedures, applications, and theoretical aspects of polymer fractionation with CRYSTAF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1557–1570, 2005  相似文献   

4.
Crystallization analysis fractionation and temperature rising elution fractionation are two techniques used to estimate the chemical composition distributions of semicrystalline copolymers. This study investigates the cooling rate and cocrystallization effects for both techniques with a series of ethylene/1‐olefin copolymers and their blends. Ideally, both techniques should operate in the vicinity of thermodynamic equilibrium so that crystallization kinetic effects are avoided. The results show that, in fact, crystallization kinetic effects play an important role at the typical cooling rate used with both techniques. Cocrystallization is significant when fast cooling rates are used. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1762–1778, 2003  相似文献   

5.
The effect of molecular weight and long‐chain branching on the crystallization analysis fractionation (CRYSTAF) of ethylene homopolymers was investigated. Several ethylene homopolymers were prepared with different molecular weights and levels of long‐chain branching to isolate these effects from the dominant effect of comonomer content on crystallizability measured by CRYSTAF. Molecular weight effects might be significant for samples with number‐average molecular weights below 5000, but this effect can be corrected if terminal methyl groups are taken into account. Long‐chain branching has only a very small effect on the CRYSTAF profile of the samples investigated in this study. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1616–1628, 2001  相似文献   

6.
Crystallization analysis fractionation (Crystaf) is a polymer characterization technique used to estimate chemical composition distributions (CCDs) of semicrystalline copolymers. The Crystaf profile can be transformed into a CCD using a calibration curve that relates average comonomer content to peak crystallization temperature. The calibration curve depends on copolymer molecular properties and Crystaf operation conditions. In this investigation, we applied a crystallization kinetics model to simulate Crystaf calibration curves and to quantify how Crystaf calibration curves depend on these factors. We applied the model to estimate the CCDs of three ethylene/1‐hexene copolymers from Crystaf profiles measured at different cooling rates and showed that our predictions agree well with the CCDs described by Stockmayer's distribution. We have also used this new methodology to investigate the effects of cooling rate, molecular weight, and comonomer type on Crystaf profiles and calibration curves. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 866–876, 2009  相似文献   

7.
A series of poly(ethylene‐co‐1‐hexene) samples made with rac‐ethylene bis(indenyl)zirconium dichloride/methylaluminoxane were analyzed by crystallization analysis fractionation (CRYSTAF). The nine samples had comonomer contents of 0–4.2 mol % 1‐hexene with a narrow range of molecular weights (34,000–39,000 g/mol). Because all the copolymer samples had narrow, unimodal chemical composition distributions, they were ideal as calibration standards for CRYSTAF. A linear calibration curve was constructed relating the peak crystallization temperature from CRYSTAF operated at a cooling rate of 0.1 °C/min and the comonomer content as determined by 13C NMR. Reactivity ratios for ethylene and 1‐hexene were estimated by the fitting of reactant liquid‐phase compositional data to the Mayo–Lewis equation. It was found that a value of the 1‐hexene reactivity ratio could not be unequivocally determined from the set of samples analyzed because the range of comonomer incorporation was too narrow. Stockmayer's bivariate distribution was used to model the fractionation process in CRYSTAF, and although a good fit to experimental CRYSTAF profiles was attained, the model did not fully describe the underlying crystallization phenomena. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2595–2611, 2002  相似文献   

8.
Crystallization analysis fractionation (Crystaf) is a polymer characterization technique for estimating the chemical composition distributions of semicrystalline copolymers. Although Crystaf has been widely used during the recent years, it is still a relatively new polymer characterization technique. More quantitative understanding of its fractionation mechanism is essential for further developments. In this work, three ethylene/1‐hexene copolymers with different 1‐hexene fractions, but similar number‐average molecular weights, were analyzed by Crystaf at several cooling rates. A mathematical model was proposed to describe the effect of comonomer fraction and cooling rate on Crystaf fractionation from a fundamental point of view. The model describes the experimental Crystaf profiles of ethylene/1‐hexene copolymers with different 1‐hexene fractions measured at distinct cooling rates very well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1010–1017, 2007  相似文献   

9.
Four polyethylene samples (PE) with different molecular weight distributions (MWD) were analyzed by crystallization analysis fractionation (Crystaf) at several cooling rates to investigate the effect of MWD and cooling rate on their Crystaf profiles. Using these results, we developed a mathematical model for Crystaf that considers crystallization kinetic effects, which are ignored in all previous Crystaf models. The Crystaf model we proposed can fit the experimental Crystaf profiles of the 4 polyethylene resins very well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2749–2759, 2006  相似文献   

10.
The effects of the composition and resulting morphology on the crystallization and rheology of blends containing poly(butylene terephthalate) (PBT) and an ethylene‐co‐ethyl acrylate (EEA) copolymer, two immiscible polymers, were studied over the entire range of volume fractions. Differential scanning calorimetry (DSC) thermograms recorded during cooling showed important differences, mainly in terms of the PBT crystallization temperatures, depending on the blend composition. In addition to the classical crystallization peaks of PBT and EEA, a third crystallization peak appeared for blends containing less than 60% PBT. This peak was attributed to a delayed crystallization of PBT. This phenomenon was examined in terms of homogeneous crystallization. Linear viscoelastic measurements allowed the delayed crystallization behavior in these polymer blends to be displayed. Indeed, the variation of the storage modulus with the temperature showed increasing steps during cooling. These sudden increases appeared at temperatures very close to those at which the crystallization peaks were observed in the DSC experiments. This behavior was verified for different blend compositions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 714–721, 2004  相似文献   

11.
Summary: Crystallization analysis fractionation (Crystaf) is a polymer characterization technique based on differences in chain crystallizabilities in a dilute solution during non-isothermal crystallization. Crystaf profiles, a weight distribution function of chains crystallized at each temperature, can be used to infer the chemical composition distribution (CCD) of copolymers when a Crystaf calibration curve, a relationship between peak crystallization temperature and average comonomer content, is known. In this investigation, the effect of the number average molecular weight, comonomer type, and cooling rate on Crystaf calibration curves were experimentally investigated. It was found that the cooling rate and comonomer type may strongly affect Crystaf calibration curves, while the influence of molecular weight is relatively subtle.  相似文献   

12.
Ellipsometry is used to measure the crystallization and melting temperature of a bidisperse blend of a crystalline‐amorphous diblock copolymer. Binary blends of sphere‐forming poly(butadiene‐ethylene oxide) (PB‐PEO) of two different molecular weights are prepared. The two PB‐PEO diblocks that are used share the same amorphous majority PB block length but different crystalline PEO minority block length. As the concentration of higher molecular weight diblock in the blend is increased, the size of the PEO spherical domains swell, providing access to the full range of domain sizes between the limits of the two neat diblock components. The change in domain size is consistent with a monotonic change in both the crystallization and melting temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
For a long time ethylene‐propylene rubber (EPR) copolymers with high comonomer contents were believed to be amorphous materials with a random copolymer composition. This is not completely correct as has been shown by temperature rising elution fractionation (TREF) combined with differential scanning calorimetry (DSC), crystallization analysis fractionation (CRYSTAF), and high temperature–high‐performance liquid chromatography (HT‐HPLC). When using only conventional crystallization‐based fractionation methods, the comprehensive compositional analysis of EPR copolymers was impossible due to the fact that large fractions of these copolymers do not crystallize under CRYSTAF conditions. In the present work, HT‐HPLC was used for the separation of the EPR copolymers according to their ethylene and propylene distributions along the polymer chains. These investigations showed the existence of long ethylene sequences in the bulk samples which was further confirmed by DSC. The results on the bulk samples prompted us to conduct preparative fractionations of EPR copolymers having varying ethylene contents using TREF. Surprisingly, significant amounts of crystallizing materials were obtained that were analyzed using a multistep protocol. CRYSTAF and DSC analyses of the TREF fractions revealed the presence of components with large crystallizable sequences that had not been detected by the bulk samples analyses. HT‐HPLC provided a comprehensive separation and characterization of both the amorphous and the crystalline TREF fractions. The TREF fractions eluting at higher temperatures showed the presence of ethylene‐rich copolymers and PE homopolymer. In order to obtain additional structural information on the separated fractions, HT‐HPLC was coupled to Fourier transform‐infrared (FT‐IR) spectroscopy. The FT‐IR data confirmed that the TREF fractions were separated according to the ethylene contents of the eluted samples. Preparative TREF analysis together with a combination of various analytical methods proved to be useful tools in understanding the complex molecular composition of these rubber samples. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 863–874  相似文献   

14.
In recent years, much attention has been paid to the development of high‐performance polyester blends, among which blends of polybutylene terephthalate/polyethylene terephthalate (PBT/PET) are expected to exhibit remarkable properties as far as their crystallization behavior is concerned. Through trial and error, appropriate commercial compositions have been chosen which could not be otherwise explained by a suitable interpretation of the mechanisms determining their solidification behavior. The solidification behavior of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a continuous cooling transformation (CCT) procedure developed previously, aiming at emulating the typical conditions encountered in polymer processing. Several samples characterized by a homogeneous structure were solidified from the melt at various cooling rates and the resulting structure and properties were subsequently evaluated by analyzing the density, microhardness (MH), and wide angle x‐ray diffraction (WAXD). The resulting solidification behavior was then compared to that exhibited by the individual constituents of the blend (i.e., PBT and PET). The blend displayed a unique solidification behavior, conversely to those of the pure components which showed characteristics not recognized in the blend except at certain restricted cooling rates ranges. The cooling rate dependence observed in the blend does not bring similarities to the crystallization behavior of individual constituents since the fall down of density with cooling rate should be related to the rate controlling demixing stage of the two moieties just before crystallization occurs. The kinetics observed is thus a measure of the kinetics of demixing. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 799–810, 2009  相似文献   

15.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

16.
In this paper, possible sources for the unexpected distributions of crystalline sequence lengths calculated from temperature rising elution fractionation (TREF) calibration experiments, as reported in a previous work, are investigated. With this aim, chain folding and cocrystalization phenomena were explored in the conditions of crystallization as used for TREF or crystallization analysis fractionation (CRYSTAF). Slow crystallizations were performed from xylene solutions of model low molecular weight ethylene homopolymers with narrow molecular weight distributions. The same experiments were performed with homopolymers having narrow molecular weight distributions and with blends having wide molecular weight distributions. The resulting distributions of the lengths of crystalline methylene sequences were directly studied by Raman in the so‐called longitudinal acoustic mode (LAM) and by DSC. For ethylene homopolymers with molecular weights below 2000 g/mol, the results from Raman LAM indicate that slow crystallization in TREF or CRYSTAF systems occurs in the extended‐chain mode. For higher molecular weights, evidence of chain folding was found. In the case of blends, independent crystallization was observed for each molecular weight when the molecular weight ranges used for the blends are relatively narrow. Cocrystallization was observed when this range was increased. Overall, these results strongly support the inverse technique calculation procedure developed by our group for the calculation of distributions of lengths of crystallizable sequences from TREF spectra. In this context, the results confirm that the unexpected crystallizable sequence lengths found in our previous work really exist and can be associated to chain folding or cocrystallization phenomena. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3083–3092, 2005  相似文献   

17.
The molecular structure elucidation of complex ethylene-propylene copolymers (EPCs) has benefited tremendously from the ability to combine preparative temperature rising elution fractionation (prep TREF) with various conventional analytical techniques. Recently reported, prep TREF-high-temperature solvent gradient interaction chromatography (HT-SGIC) (Cheruthazhekatt et. al, Macromolecules 45:2025–2034, 2012) is one of the most effective and highly useful coupled methods that allow for the exact measurement of the chemical composition distribution (CCD) present in various components of EPCs. The major drawback of prep TREF involving slow crystallization and elution steps is the long time per experiment. Here, we present a new and by far the simplest and fastest preparative fractionation method for complex polyolefins—preparative solution crystallization fractionation (prep SCF). The scope of the present study was to achieve a fast fractionation of complex bulk samples into an amorphous, semicrystalline and highly crystalline fraction, in sufficient amounts for the subsequent detailed compositional analysis. The effects of two different solvents, xylene and trichlorobenzene (TCB), and their influence on the solution crystallization of chemically different components of EPC were systematically investigated by combining prep SCF with crystallization analysis fractionation (CRYSTAF), FTIR, differential scanning calorimetry (DSC) and HT-SGIC analyses. Significant differences in the chemical composition of similar SCF fractions obtained from xylene and TCB were observed indicating the strong influence of the solvent on solution crystallization. Prep SCF-HT-SGIC results showed that, under similar experimental conditions, TCB as the fractionation solvent provides superior separation of complex semicrystalline ethylene-propylene (EP) components. Very interestingly, for the first time, separation of soluble fractions (30 °C) of iPP, EPC and PE homopolymer components in complex EPC was achieved by prep SCF in TCB. On the other hand, SCF fractionation in xylene provides a soluble fraction that is perfectly amorphous as has been shown by DSC and CRYSTAF. Based on these results, the present SCF approach and an updated method of the combination of prep SCF-HT-SGIC hold significant promise for the fractionation and characterization of similar complex EPCs in a simple way within a short analysis time, by using significantly smaller amounts of solvent compared to the previously reported, rather time-consuming, prep TREF-HT-SGIC combination. No similarly selective solution crystallization fractionations in preparative scale have been reported before.
Figure
Figure illustrates the compositional heterogeneity (by DSC and HT-SGIC) observed in the soluble fraction of a complex ethylene propylene copolymer obtained by using a simple and rapid fractionation technique, preparative solution crystallization fraction (Prep SCF) in solvent TCB  相似文献   

18.
We use large scale coarse‐grained molecular dynamics simulations to study the kinetics of polymer melt crystallization. For monodisperse polymer melts of several chain lengths under various cooling protocols, we show that short chains have a higher terminal crystallinity value compared to longer ones. They align at the early stages and then cease evolving. Long chains, however, align, fold into lamella structures and then slowly optimize their dangling ends for the remaining simulation time. We then identify the mechanism behind bidisperse blend crystallization. To this end, we introduce a new algorithm (called Individual Chain Crystallinity) that allows the calculation of the crystallinity separately for short and long chains in the blend. We find that, in general, bidispersity hinders crystallization significantly. At first the crystallinity of the long chain components exceeds that of the monodisperse melt, but subsequently falls below the corresponding monodisperse melt curve after a certain “crossover time.” The time of the crossover can be attributed to the time required for the full crystallization of the short chains. This indicates that at the early stages the short chains are helping long chains to crystallize. However, after all short chains have crystallized they start to hinder the crystallization of the long chains by obstructing their motion. Lastly, polymer crystallization upon various thermodynamic protocols is studied. Slower cooling is found to increase the crystallinity value. Upon an instantaneous deep quench and subsequent isothermal relaxation, the crystallinity grows rapidly with time at early stages and subsequently saturates. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2318–2326  相似文献   

19.
Summary: New crystallization procedures have been developed for the analysis of the chemical composition distribution in polyolefins by pumping a small flow of solvent during the crystallization cycle. One of the new techniques, crystallization elution fractionation (CEF) combines the separation power of TREF and CRYSTAF and has been shown to provide very fast analysis of the composition distribution.  相似文献   

20.
The possibility of the cocrystallization of random fluorinated tetrafluoroethylene copolymers was investigated with differential scanning calorimetry and wide‐angle X‐ray scattering. In particular, mixtures composed of poly(tetrafluoroethylene)‐co‐(hexafluoropropylene) containing 8 or 1 mol % comonomer or poly(tetrafluoroethylene)‐co‐perfluoromethylvinylether (2–10 mol % comonomer) were examined. The extent of cocrystallization was determined by the difference in the comonomer content, being higher when the difference was lower, and it was favored when quenching from the melt state was adopted. Nevertheless, a key to determining the extent of cocrystallization was the behavior of counits with respect to inclusion or exclusion from the crystal lattice: when the components were different with respect to this behavior, they were not likely to be miscible in the crystal state even if the difference in the comonomer content was low. Moreover, the similarity in the crystallization rates between the components played an important role: the cocrystallization decreased as the difference in the crystallization rate increased until, when the difference became high enough, the blend became immiscible. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1477–1489, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号