首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We give an application of the Crandall–Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations.  相似文献   

2.
This work investigates a degenerate reaction–diffusion system with homogeneous Dirichlet boundary data. Using the self-similar form of function and super-solution sub-solution techniques, together with results from interactions among the multi-nonlinearities in the system, described using ten exponents, the global existence and blow-up criteria for nonnegative solutions are determined.  相似文献   

3.
ABSTRACT

A nonlocal reaction–diffusion equation arising in various applications is studied. The speed of traveling waves is determined by means of a minimax representation. It is used to obtain the wave speed estimates and asymptotic values.  相似文献   

4.
5.
In this paper, we investigate a reaction–diffusion–advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction–diffusion–advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.  相似文献   

6.
We continue our study on the global dynamics of a nonlocal reaction–diffusion–advection system modeling the population dynamics of two competing phytoplankton species in a eutrophic environment, where both populations depend solely on light for their metabolism. In our previous work, we proved that system (1.1) is a strongly monotone dynamical system with respect to a non-standard cone related to the cumulative distribution functions, and further determined the global dynamics when the species have either identical diffusion rate or identical advection rate. In this paper, we study the trade-off of diffusion and advection and their joint influence on the outcome of competition. Two critical curves for the local stability of two semi-trivial equilibria are analyzed, and some new competitive exclusion results are obtained. Our main tools, besides the theory of monotone dynamical system, include some new monotonicity results for the principal eigenvalues of elliptic operators in one-dimensional domains.  相似文献   

7.
Coupled systems on networks (CSNs) can be used to model many real systems, such as food webs, ecosystems, metabolic pathways, the Internet, World Wide Web, social networks, and global economic markets. This paper is devoted to investigation of the stability problem for some stochastic coupled reaction–diffusion systems on networks (SCRDSNs). A systematic method for constructing global Lyapunov function for these SCRDSNs is provided by using graph theory. The stochastic stability, asymptotically stochastic stability and globally asymptotically stochastic stability of the systems are investigated. The derived results are less conservative than the results recently presented in Luo and Zhang [Q. Luo, Y. Zhang, Almost sure exponential stability of stochastic reaction diffusion systems. Non-linear Analysis: Theory, Methods & Applications 71(12) (2009) e487–e493]. In fact, the system discussed in Q. Luo and Y. Zhang [Q. Luo, Y. Zhang, Almost sure exponential stability of stochastic reaction diffusion systems. Non-linear Analysis: Theory, Methods & Applications 71(12) (2009) e487–e493] is a special case of ours. Moreover, our novel stability principles have a close relation to the topological property of the networks. Our new method which constructs a relation between the stability criteria of a CSN and some topology property of the network, can help analyzing the stability of the complex networks by using the Lyapunov functional method.  相似文献   

8.
This paper is concerned with the dynamics of a two-species reaction–diffusion–advection competition model subject to the no-flux boundary condition in a bounded domain. By the signs of the associated principal eigenvalues, we derive the existence and local stability of the trivial and semi-trivial steady-state solutions. Moreover, the nonexistence and existence of the coexistence steady-state solutions stemming from the two boundary steady states are obtained as well. In particular, we describe the feature of the coincidence of bifurcating coexistence steady-state solution branches. At the same time, the effect of advection on the stability of the bifurcating solution is also investigated, and our results suggest that the advection term may change the stability. Finally, we point out that the methods we applied here are mainly based on spectral analysis, perturbation theory, comparison principle, monotone theory, Lyapunov–Schmidt reduction, and bifurcation theory.  相似文献   

9.
10.
A delayed three-component reaction–diffusion population model with Dirichlet boundary condition is investigated. The existence and stability of the positive spatially nonhomogeneous steady state solution are obtained via the implicit function theorem. Moreover, taking delay ττ as the bifurcation parameter, Hopf bifurcation near the steady state solution is proved to occur at the critical value τ0τ0. The direction of Hopf bifurcation is forward. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the stability of bifurcating periodic solutions occurring through Hopf bifurcations is investigated. It is demonstrated that the bifurcating periodic solution occurring at τ0τ0 is orbitally asymptotically stable. Finally, the general results are applied to four types of three species population models. Numerical simulations are presented to illustrate our theoretical results.  相似文献   

11.
A diffusive Lotka–Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka–Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper–lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.  相似文献   

12.
In this paper, a nonlocal reaction–diffusion model with distributed delay is studied. The asymptotic speed of spread is established for this model, and its coincidence with the minimal wave speed for traveling wave fronts is proved. Moreover, the dependence of the asymptotic speed of spread on delay and the nonlocal effect is considered. Our main finding here is that the delay can induce slow asymptotic speed of spread while the nonlocal effect can increase fast asymptotic speed of spread.  相似文献   

13.
In this paper we study a reaction–diffusion–advection predator–prey model in a river. The existence of predator-invasion traveling wave solutions and prey-spread traveling wave solutions in the upstream and downstream directions is established and the corresponding minimal wave speeds are obtained. While some crucial improvements in theoretical methods have been established, the proofs of the existence and nonexistence of such traveling waves are based on Schauder’s fixed-point theorem, LaSalle’s invariance principle and Laplace transform. Based on theoretical results, we investigate the effect of the hydrological and biological factors on minimal wave speeds and hence on the spread of the prey and the invasion of the predator in the river. The linear determinacy of the predator–prey Lotka–Volterra system is compared with nonlinear determinacy of the competitive Lotka–Volterra system to investigate the mechanics of linear and nonlinear determinacy.  相似文献   

14.
In this paper, spreading speed and traveling waves for reaction–diffusion model with distributed delay and nonlocal effect without monotonicity are investigated. It is shown that there exists the spreading speed c which coincides with the minimal wave speed, and its limiting integral equation has an unique traveling wave with speed c > c, and no traveling wave with c < c. Moreover, the dependence of the spreading speed on the delay and the nonlocal effect is considered.  相似文献   

15.
We consider a class of degenerate reaction–diffusion systems with quadratic nonlinearity and diffusion only in the vertical direction. Such systems can appear in the modeling of photochemical generation and atmospheric dispersion of pollutants. The diffusion coefficients are different for all equations. We study global existence of solutions.  相似文献   

16.
This paper is concerned with a nonlinear optimization problem that naturally arises in population biology. We consider the effect of spatial heterogeneity on the total population of a biological species at a steady state, using a reaction–diffusion logistic model. Our objective is to maximize the total population when resources are distributed in the habitat to control the intrinsic growth rate, but the total amount of resources is limited. It is shown that under some conditions, any local maximizer must be of “bang–bang” type, which gives a partial answer to the conjecture addressed by Ding et al. (Nonlinear Anal Real World Appl 11(2):688–704, 2010). To this purpose, we compute the first and second variations of the total population. When the growth rate is not of bang–bang type, it is shown in some cases that the first variation becomes nonzero and hence the resource distribution is not a local maximizer. When the first variation becomes zero, we prove that the second variation is positive. These results implies that the bang–bang property is essential for the maximization of total population.  相似文献   

17.
18.
This paper is concerned with the stability of traveling wave fronts for a coupled system of non-local delayed lattice differential equations with a quiescent stage. It shows that under certain conditions all non-critical traveling wave fronts are globally exponentially stable, and critical ftraveling wave fronts are globally algebraically stable by applying the weighted energy method and the semi-discrete Fourier transform.  相似文献   

19.
20.
A reaction–diffusion equation coupled to an ODE on convex domains is proposed to model a single species with a non-mobile state and an active state. Under general cooperative/competitive interactions, a trivial stability on convex domains is shown and the reaction–diffusion–ODE system does not support interesting patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号