首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Heterogeneous palladium (Pd)‐based catalysts are extensively applied to improve the catalytic performance and/or expand the reaction scope in many catalytic processes, involving the cross‐coupling, hydrogenation, reduction, and oxidation reactions. Among them, metal–organic framework (MOF)‐supported Pd nanoparticles (Pd NPs) are becoming the most popular one for their excellent catalytic performance and reusable property. To motivate the development of this technology, the applications of MOF‐supported Pd NPs (Pd NPs/MOFs) in heterogeneous catalysis are critically summarized herein, including the hydrogenation reduction of nitro‐ and polyunsaturated compounds, synthesis of carbon–carbon (C? C) bonds compounds, chromium (Cr(VI)) reduction, dehalogenation, alcohol oxidation, CO2 conversion, and CO oxidation. The influences of base, solvents, electron character of substitutes, and type of halogen on the catalytic performance are comprehensively discussed. Finally, the application prospects of Pd NPs/MOFs and existing shortcomings in the catalytic field are proposed.  相似文献   

2.
Hybrid nanostructures composed of gold nanoparticles (NPs) and carbon nanotubes (CNTs) have been prepared by a microwave-assisted method in the mixed solvents of oleylamine and oleic. The morphology, structure and composition of as-obtained Au/CNT composites are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD). The composites show characteristic plasmon absorption of Au NPs in the Ultraviolet–visual spectrum. Fourier transform infrared spectrum shows the successful introduction of functional groups on the surface of CNTs, which are crucial factors to assist the nucleation in situ of Au NPs on the surface of CNTs. Electrochemical measurements show the enhancement electrochemical response for the gold electrode modified with Au/CNT composites.  相似文献   

3.
We have synthesized AlN nanoparticles (NPs) doped in-situ with Er (AlN:Er) using inert gas condensation technique. Using x-ray diffraction (XRD) peak broadening analysis with the Williamson–Hall (W–H) Uniform Deformation Model (UDM) the crystallite size of the NPs and the strain in NPs were found to be 80±38 nm and 3.07×10−3±0.9×10−3 respectively. In comparison, using the Debye–Scherrer's (DS) formula, we have inferred that the crystallite size of the NPs was 23±6 nm and the average strain was 4.3×10−3±0.4×10−3. The scanning electron microscopy images show that the NPs are spherical and have an average diameter of ∼300 nm. The crystallite size is smaller than the size of the NPs revealing their polycrystalline behavior. In addition, the NPs strain, stress and energy density were also calculated using W–H analysis combined with the Uniform Deformation Stress Model (UDSM) and the Uniform Deformation Energy Density Model (UDEDM). Suggested by the spherical geometry and polycrystalline nature of the AlN NPs, the strain computed from UDM, UDSM and UDEDM were in agreement confirming an isotropic mechanical nature of the particle. Luminescence measurements revealed the temperature dependence of the optical emission of the Er3+ ions, confirming the use of AlN:Er NPs for nano-scale temperature sensing.  相似文献   

4.
The physical properties of materials are critical to their functionality, and the ability to control these properties using external forces is a significant challenge. In this study, we investigate the effect of three high frequency acoustic wave vibration patterns on the structure and morphology of MOF particles. Our results indicate that while regular vibration patterns generated by SAW can alter particle morphology, hybrid waves and Lamb waves with irregular vibration patterns can synthesise MOF crystals with multi-level pores. The vibration pattern of acoustic waves is shown to be a critical factor in controlling the particle morphology process. These results provide new insights into the precise control of crystal structure and the theory of crystallisation by particle attachment (CPA).  相似文献   

5.
Bismuth-substituted yttrium iron garnet (Bi-YIG) nanoparticles (NPs) were prepared by coprecipitation and subsequent heating treatment. Thermal gravity-differential thermal analysis was performed to investigate the thermal behavior of the Bi-YIG precursors and to decide the best annealing temperature. Phase formation of garnet NPs was investigated by X-ray powder diffraction. The size of Bi-YIG NPs was investigated by transmission electron microscopy, and the magnetic properties of Bi-YIG NPs were measured using a vibrating sample magnetometer. The results show that the temperature needed for the transformation of Bi-YIG from the amorphous phase to the garnet phase decreases with increasing Bi content, and Bi-YIG NPs with sizes of 28–78 nm are obtained after heating treatment at 650–1000 °C. The saturation magnetization of Bi-YIG NPs increases as the Bi content increases. Moreover, the Faraday rotation of polymethyl methacrylate (PMMA) slices doped with Bi-YIG NPs was investigated. The results indicate that the angle of Faraday rotation increases with increasing Bi content in PMMA composites, and the maximum value of the figure of merit is 1.46°, which is comparable to the value of a sputtered film. The Bi-YIG NPs-doped PMMA slices are new promising materials for magneto-optical devices.  相似文献   

6.
李龙武  尚真真  邓罗根 《中国物理 B》2016,25(9):90301-090301
This work demonstrates the realization of a lasing in scattering media,which contains dispersive solution of Zn O nanoparticles(NPs) and laser dye 4-dicyanomethylene-2-methyle-6-(p-dimethylaminostyryl)-4H-pyran(DCM) in negative liquid crystals(LCs) that was injected into a cell.The lasing intensity of the dye-doped negative LC laser can be tuned from low to high if the NPs concentration is increased.The tunability of the laser is attributable to the clusters-sensitive feature in effective refractive index of the negative LCs.Such a tunable negative liquid crystal laser can be used in the fabrication of new optical sources,optical communication,and liquid crystal laser displays.  相似文献   

7.
Gold nanoparticles (NPs) with a size close to 1.5?nm, coated with organic ligands bearing Si(OEt)3 groups, were synthesized and used to obtain self-standing films by a sol?Cgel process catalyzed by formic acid. Using FESEM images, FTIR, and UV?Cvisible spectra, it was observed that very small gold NPs self-assembled by Si?CO?CSi covalent bonds forming crosslinked clusters with sizes up to about 50?nm in which NPs preserve their individuality. The possibility of fixing very small gold NPs in a crosslinked film opens a variety of potential applications based on the specific properties of small-size particles. As an example, we illustrated the way in which one can take advantage of the low melting temperature of these NPs to generate tiny gold crystals partially embedded at the surface, a process that might be used for the development of catalysts or sensors. Besides, the shift and change in the intensity of the plasmon band produced by heating to 100?°C may be employed to develop an irreversible sensor of undesirable temperature excursions during the life-time of a specific product.  相似文献   

8.
The cathodoluminescence and photoluminescence (PL) spectra of ZnO nanoparticles (NPs) embedded into the cetylpyridinium chloride (CPCL) matrix were studied. The composites were obtained by drying an aqueous suspension of CPCL and ZnO NPs, with NaCl and with NaOH additives. We observed that only NaOH addition lead to a significant increase in the PL intensity which we attribute to the surface chemistry of the ZnO NPs. We propose that thin ZnOH2 and Na2ZnO2 layers form on the surface of the NPs; these layers present an increased number of oxygen vacancies, which act as emitting centres.  相似文献   

9.
The performance analysis of three-dimensional (3-D) braided composites is made difficult by their complex and interlacing structure, and is still under development. To get complete first-hand data on the material parameters of these composites, co-braided optical fiber sensors (OFS) can be used to measure the internal strain. This information is helpful for subsequent stiffness predictions and failure analysis. This paper introduces a method of incorporating OFS into braided composites, and establishes a constitutive theoretical model for the hybrid material. Experiments are conducted to measure the internal strain of specimens under tension, and the results are compared to theoretical predictions.  相似文献   

10.
The compressive stress-strain diagrams are obtained for layered single crystals of the LiF-LiF:Mg type with different orientations of the reinforcing layers at T = 4.2 and 300 K. The strength characteristics and specific features of the defect and dislocation structures of the crystals strained in liquid helium are studied and compared with those for the crystals strained at 300 K. It is established that the layered single crystals remain plastic at T = 4.2 K. Under a strain ε > 1%, there arise microcracks and macrocracks responsible for complete fracture of the crystals. It is revealed that long-term (for ten years) storage of the layered single crystals at 300 K substantially affects the magnesium impurity structure in the reinforcing layers and leads to a considerable enhancement of their strength characteristics. This effect is taken into account when analyzing the strength properties of the layered single crystals in the temperature range T = 300–4.2 K. The inference is made that the results obtained in studying the defect microstructure of the model layered single crystals at the initial stage of plastic deformation can be used to predict the strength properties of the composites at T = 4.2 K.  相似文献   

11.
In this study, we report a simple and cost-effective method for in situ decoration of Ag NPs onto nanoporous TiO2 microrods by one medium (ethylene glycol) that can produce two different morphologies. In order to investigate the morphology, phase composition, crystalline structure, and chemical state (valency) of samples before and after annealing in air at different temperatures, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed. The present results show that the size, morphology and crystallinity of both Ag NPs and TiO2 microrod substrate depend on the post-annealing treatment temperatures. The annealed Ag–TiO2 NP/microrod composites show large inhibition zones against E. coli bacteria. The obtained Ag–TiO2 composites have the potential for use as a novel antibacterial material and in water treatment applications.  相似文献   

12.
We conducted an experimental study of the effect of Au nanoparticles (NPs) on the strain-dependent electrical properties in chemical vapor deposition grown graphene. We used 5-nm thick Au NPs as an effective cover (and doping) layer for graphene, and found that Au NPs decrease electrical resistance by two orders of magnitude. In addition, the Au NPs suppress the effect of strain on resistance because the intrinsic topological cracks and grain boundaries in graphene are filled with Au nanoparticles. This method has a big potential to advance industrial production of large-area, high-quality electronic devices and graphene-based transparent electrodes.  相似文献   

13.
14.
Multifunctional substrates with superhydrophobic and biocidal properties are gaining interest for a wide range of applications; however, the production of such surfaces remains challenging. Here, the sonochemical method is utilized to impart superhydrophobicity and antimicrobial properties to a polyethylene (PE) sheet. This is achieved by sonochemically depositing nanoparticles (NPs) of a hydrophobic fluoro-polymer (FP) on the PE sheets. The polymer is a flexible, transparent fluoroplastic composed of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride in the form of a powder. The NPs of polymers are generated and deposited on the surface of the PE using ultrasound irradiation. Optimizing the process results in a homogeneous distribution of 110–200 nm of NPs on the PE surface. The coated surface displays a water-contact angle of 160°, indicating excellent superhydrophobicity. This superhydrophobic surface shows high stability under outdoor conditions for two months, which is essential for various applications. In addition, metal-oxide nanoparticles (CuO or ZnO NPs) were integrated into the polymer coating to achieve antibacterial properties and increase the surface roughness. The metal oxides were also deposited sonochemically. The antibacterial activity of the FP@ZnO and FP@CuO PE composites was tested against the bacterium Staphylococcus aureus, and the results show that the FP@CuO PE can effectively eradicate the bacteria. This study highlights the feasibility of using the sonochemical method to deposit two separate functions, opening up new possibilities for producing “smart” novel surfaces.  相似文献   

15.
The crystallization behavior of well‐dispersed rare‐earth doped luminous pigment/polyamide 6 (PA6) composites prepared through in situ polymerization was investigated by DSC. The rare‐earth doped luminous pigments could accelerate the forming of γ form crystals and also had a great effect on the crystallinity and crystallization rate of PA6 composites. The Ozawa, Jeziorny, and Mo methods were used to analyze the non‐isothermal crystallization kinetics. It was found that the Ozawa method was unsuitable for non‐isothermal crystallization of PA6 composites. The results of Jeziorny analysis showed that the crystallization rates of PA6 composites increased when the luminous pigment content was larger than 5 wt.%. Mo's analysis also showed that the presence of the pigment shortened the crystallization time and accelerated the crystallization rate. Polarized optical microscopy showed that the spherulites became smaller with increasing of the luminous pigment amount due to the heterogeneous nucleation.  相似文献   

16.
B. Sun  N. Pan 《哲学杂志》2013,93(34):5461-5484
Z-transform theory was applied to several three-dimensional (3D) textile structural composites, including an angle-interlock woven composite, a multilayer multi-axial warp knitted composite and a 4-step braided composite, to characterize their system dynamic behaviour in the frequency domain. More specifically, the analysis focused on the relationship between the compressive load and the system response under static (strain rate 0.001?s?1) and impulsive (strain rate up to 2700?s?1) strain along both the in-plane and out-of-plane directions, respectively. The high strain rate compressions were tested using a split Hopkinson pressure bar apparatus, and the input and output (the stress–strain curve) of the test specimen was obtained by recording the signals using a computer for further analysis. Z-transform was then used to analyze the dynamic response and stability of the composites of different preform structures and at various loading conditions. This is the first such attempt to study the compression behaviour of 3D textile structural composites at various strain rates in the frequency domain in order to reveal their mechanical behaviour and features of the materials from a new perspective.  相似文献   

17.
We present a theoretical study of a new hybrid compound, where the C60 molecules are encapsulated in a recently discovered metal-organic framework (MOF). Being placed in a rigid skeleton, the fullerene molecules form a cubic crystal, while the intermolecular distance of the fullerenes is tuned by the choice of appropriate organic linkers of the MOF structure. The resulting C60 crystal shows a density of conduction states considerably higher than any of the fullerene crystals considered so far, which is a key factor influencing the transition temperature of the superconducting state. This constitutes a new approach of tuning the density of states of a fullerene crystal.  相似文献   

18.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

19.
Silver was stabilized on multi-walled carbon nanotubes (MWCNTs) by chemical-reduction technique using N,N-dimethylformamide (DMF) as a reducing agent. The influence of silver on the performance of carbon nanotubes (CNTs) was investigated by employing Fourier-transform infrared spectra (FTIR), Raman spectroscopy (RAS), thermal gravimetric analysis (TGA), zeta potential measurement, scanning electron microscope (SEM), electron dispersive X-ray spectrometer (EDX), transmission electron microscopy (TEM), and reflectance spectroscopy (RS). FTIR as well as RS methods evidenced the synthesis procedure using chemical reduction method was successful. Performing TGA of the samples under oxygen atmosphere demonstrated that the silver nanoparticles (Ag NPs) generated on MWCNTs surface can decrease the thermal stability of the particles by the catalytic oxidation of CNTs. In contrary, the thermal stability of the MWCNTs has improved under nitrogen atmosphere. EDX results showed the presence of Ag, Au and Co on the surface of deposited sample. The synthesised silver multi-walled carbon nanotubes (Ag–MWCNTs) were found to have higher UV reflection activity compared with untreated particles. The Ag–CNTs can be used in producing anti-UV composites.  相似文献   

20.
Nanosized composites based on multiwall carbon nanotubes (CNTs) and Al2O3 have been obtained for the first time in supercritical (SC) media (water, hexane, and their mixture). For comparison, materials of the same net composition have been prepared by hydrothermal synthesis and sol–gel processing. The composites have been characterized by electron microscopy, X-ray diffraction, and thermal analysis. The structure of the materials synthesized in the SC media depends on the fluid composition. The most uniform composite containing alumina particles that are comparable in size to the CNT diameter and are stabilized on the carbon surface can be obtained in the SC mixture of hexane and water. When water and hexane are used separately, the formation of large alumina crystals on the CNT surface and contamination of the composite by the products of hexane pyrolysis and carbonization are, respectively, observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号