首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 5 毫秒
1.
A detailed investigation of the lateral electric field effect on single electron states in coupled quantum dot-ring structure has been systematically studied for cases with and without an on-center hydrogenic donor impurity. The single electron energy spectrum has been found using the effective mass approximation and an exact diagonalization technique. The electron ground state's probability density has been examined for different values of the confinement energies and depth of dot confinement relative to the bottom of the quantum ring and barrier thickness. The energy level's dependence on the electric field strength has been studied considering the effects of mentioned parameters of the structure and hydrogenic donor impurity.  相似文献   

2.
The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.  相似文献   

3.
A detailed theoretical study of the combined effects of hydrostatic pressure and in-growth direction applied electric field on the binding energy and self-polarization of a donor impurity in a system of GaAs-(Ga,Al)As coupled square quantum wells is presented. The study is performed in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electron effective mass, the dielectric constant, the barrier height, the well sizes, all them varying with the hydrostatic pressure are taken into account within the study. The results obtained show that the impurity binding energy and its self-polarization bear strong dependencies with the hydrostatic pressure, the strength of the applied electric field, the width of the confining potential barriers, and the impurity position.  相似文献   

4.
In the present work, we investigated the simultaneous effects of intense non-resonant laser and external magnetic fields on the electronic structure and the nonlinear optical properties (the light absorption, the refractive index and the group velocity) of GaAs/Al0.3Ga0.7As near-surface quantum well. The calculations were performed within the compact density-matrix formalism under the steady state conditions with the use of the effective mass approximation. The obtained results show that the electronic structure and, consequently, the optical properties are sensitive to the dressed well induced asymmetry and the effects of the magnetic field. By changing the intensities of the magnetic and laser fields, we can obtain the control of the group velocity, without the need for the growth of many different samples.  相似文献   

5.
We have theoretically investigated the electronic properties and nonlinear optical rectification spectra of GaAs/AlGaAs anisotropic quantum ring, modelled by an outer ellipsis and an inner circle, in connection to the presence of a donor off-centre impurity, structural distortions and in-plane electric field. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. The energy spectrum of concentric ring reveals an anomalous oscillatory behaviour in the region of relatively small values of the electric field (< 12?kV/cm) followed by linear Stark effect at higher field values. We showed that this unusual behaviour is strongly affected by the ratio of the outer/inner ring radii, the displacement of the inner circle (eccentricity) along the x or y axis and the impurity presence. The related nonlinear optical rectification spectra present maxima whose positions mirror this oscillatory behaviour and consequently can be used as an excellent tool to distinguish the presence of an impurity or the direction of the eccentricity.  相似文献   

6.
Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.  相似文献   

7.
The third harmonic generation (THG), linear and nonlinear optical absorption coefficients (OACs), and refractive index changes (RICs) are investigated in a Woods–Saxon quantum well (QW) modulated by the hydrostatic pressure and applied electric field. The effect of non-uniform aluminum doping (position-dependent effective mass (PDEM)) on the mass of the system is discussed, and further to explore the influence of PDEM on the nonlinear THG, OACs, and RICs of the Woods–Saxon QW. These nonlinear optical properties above are obtained using the compact-density matrix formalism. The electron states in a Woods–Saxon QW under the constant effective mass (CEM) and PDEM are calculated by solving the Schrödinger equation via the finite difference technique. The contributions from competing effects of the hydrostatic pressure and applied electric field to the nonlinear optical properties with CEM and PDEM are reported, as well as the comparison with each other. The observations reveal that the regulation of external fields and the influence of PDEM play an important role in the photoelectric properties of QW.  相似文献   

8.
Esra Aciksoz  Orhan Bayrak  Asim Soylu 《中国物理 B》2016,25(10):100302-100302
The behavior of a donor in the GaAs–Ga_(1-x)Al_xAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters(De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号