首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Herein, the dynamic pull-in instability of cantilever nanoactuator fabricated from conductive cylindrical nanowire with circular cross-section is studied under the presence of Casimir force. The Gurtin–Murdoch surface elasticity in combination with the couple stress theory is employed to incorporate the coupled effects of surface energy and size phenomenon. Using Green–Lagrange strain, the higher order surface stress components are incorporated in the governing equation. The Dirichlet mode is considered and an asymptotic solution, based on the path integral approach, is applied to consider the effect of the Casimir attraction. Furthermore, the influence of structural damping is considered in the model. The nonlinear governing equation is solved using analytical reduced order method (ROM). The effects of various parameters on the dynamic pull-in parameters, phase planes and stability threshold of the actuator are demonstrated.  相似文献   

2.
MV级气体开关脉冲自击穿特性及支撑结构的优化   总被引:3,自引:3,他引:0  
 设计了两种结构的1 MV气体开关:一种是高压电极为悬臂,未突出绝缘支撑筒的结构(悬臂开关);一种为高压电极突出绝缘支撑筒的结构(分段支撑开关)。结合上述两种开关在脉冲电压下的自击穿实验和静电场模拟,分析了不同开关结构对电场分布的影响,结果表明分段支撑开关比悬臂开关的绝缘更安全,性能更稳定。分析了悬臂开关绝缘支撑筒击穿的原因,认为是开关内形成的流注在电场作用下加速并轰击支撑筒表面导致了支撑筒的绝缘损坏。利用自击穿实验的结果,给出了包含场增强因子形式的Bradley经验公式,计算值与实验结果吻合较好。  相似文献   

3.
The dynamics of an electrostatically actuated carbon nanotube (CNT) cantilever are discussed by theoretical and numerical approaches. Electrostatic and intermolecular forces between the single-walled CNT and a graphene electrode are considered. The CNT cantilever is analyzed by the Euler–Bernoulli beam theory, including its geometric and inertial nonlinearities, and a one-mode projection based on the Galerkin approximation and numerical integration. Static pull-in and pull-out behaviors are adequately represented by an asymmetric two-well potential with the total potential energy consisting of the CNT elastic energy, electrostatic energy, and the Lennard-Jones potential energy. Nonlinear dynamics of the cantilever are simulated under DC and AC voltage excitations and examined in the frequency and time domains. Under AC-only excitation, a superharmonic resonance of order 2 occurs near half of the primary frequency. Under both DC and AC loads, the cantilever exhibits linear and nonlinear primary and secondary resonances depending on the strength of the excitation voltages. In addition, the cantilever has dynamic instabilities such as periodic or chaotic tapping motions, with a variation of excitation frequency at the resonance branches. High electrostatic excitation leads to complex nonlinear responses such as softening, multiple stability changes at saddle nodes, or period-doubling bifurcation points in the primary and secondary resonance branches.  相似文献   

4.
In this paper, the pull-in instability of electrostatically actuated nanotweezers considering the dispersion forces is studied using distributed and lumped parameter models. By analogy to nanoswitches, closed-form solutions are obtained for electrostatic nanotweezers. The distributed and lumped parameter modeling of the tweezer result, respectively, in two coupled nonlinear boundary value problems and two coupled nonlinear equations, which are solved numerically in the cases of electrostatic microtweezers, freestanding nanotweezers, and electrostatic nanotweezers. In each case, analytical and numerical solutions are obtained and compared with those of the corresponding switch. In addition, the results of the distributed and lumped parameter models are compared. The detachment length and minimum initial gap of nanotweezers are determined.  相似文献   

5.
In this work we investigate the influence of the combined effect from random self-affine roughness, finite conductivity, and finite temperature on the pull-in voltage in microswitches influenced by thermal and quantum vacuum fluctuations through the Casimir force and electrostatic forces. It is shown that for separations within the micron or sub-micron range the roughness influence plays a dominant role, while temperature starts to show its influence well above micron separations. Indeed, increasing the temperature leads to higher pull-in voltages since it leads to an increased Casimir force. The temperature influence is more significant for relatively large roughness exponent H ∼ 1, while its influence is significantly lower with increasing lateral roughness correlation length ξ or due to long wavelength surface smoothness.  相似文献   

6.
在工作气压和火花间隙固定的条件下,针对稍不均匀场的圆饼形电极开关开展了不同电极材料下开关自击穿实验,开关间隙距离为5mm,工作气压为0.25 MPa,击穿电压平均值为40kV。分别选取了不锈钢、黄铜、钨铜合金和石墨材料作为实验对象,对比了不同电极材料下电极质量损失、电极表面形貌和开关静态特性的差异。实验结果表明,石墨电极质量损失速率略高于金属电极,但是由于石墨电极烧蚀产物多为气体,因此石墨电极绝缘子污染程度远小于金属电极。石墨电极开关在低欠压比下自击穿概率也远小于金属电极开关。三种金属电极开关,其静态特性差异不大,但钨铜电极烧蚀程度显著低于不锈钢和黄铜电极开关。  相似文献   

7.
Long Zhou 《中国物理 B》2023,32(1):17701-017701
Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution function of BaTiO3 and the phase transition temperatures have been investigated, and the results show that the core-shell potential model is effective and the structure of BaTiO3 is stable in a temperature range of 10 K-150 K. Molecular dynamics simulated hysteresis loops of BaTiO3 show that anisotropy can play an important role in the coercive field. Based on the rational simulation process, the effects of cantilever beam bent angle and fixed length on the polarization are analyzed. It is found that the small bent angle of the curved cantilever beam can give a proportional relationship with a fixed end length and a non-linear relationship is presented when the bent angle is much larger. The prediction of flexoelectric coefficient in BaTiO3 is 18.5 nC/m. This work provides a computational framework for the study of flexoelectric effect by using molecular dynamics.  相似文献   

8.
An axially moving nested cantilever beam is a type of time-varying nonlinear system that can be regarded as a cantilever stepped beam. The transverse vibration equation for the axially moving nested cantilever beam with a tip mass is derived by D’Alembert?s principle, and the modified Galerkin?s method is used to solve the partial differential equation. The theoretical model is modified by adjusting the theoretical beam length with the measured results of its first-order vibration frequencies under various beam lengths. It is determined that the length correction value of the second segment of the nested beam increases as the structural length increases, but the corresponding increase in the amplitude becomes smaller. The first-order decay coefficients are identified by the logarithmic decrement method, and the decay coefficient of the beam decreases with an increase in the cantilever length. The calculated responses of the modified model agree well with the experimental results, which verifies the correctness of the proposed calculation model and indicates the effectiveness of the methods of length correction and damping determination. Further studies on non-damping free vibration properties of the axially moving nested cantilever beam during extension and retraction are investigated in the present paper. Furthermore, the extension movement of the beam leads the vibration displacement to increase gradually, and the instantaneous vibration frequency and the vibration speed decrease constantly. Moreover, as the total mechanical energy becomes smaller, the extension movement of the nested beam remains stable. The characteristics for the retraction movement of the beam are the reverse.  相似文献   

9.
The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations. Based on the Kirchhoff theory along with Eringen's nonlocal elasticity theory, a nonclassical model is developed. Using the Galerkin method(GM), the governing equation which is a nonlinear partial differential equation(NLPDE) of the fourth order is converted to a nonlinear ordinary differential equation(NLODE) in the time domain. Then, the reduced NLODE is solved analytically by means of the homotopy analysis method. At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.  相似文献   

10.
戴宏宇  郭景润  俞斌  沈昊  李黎 《强激光与粒子束》2022,34(7):075003-1-075003-7
气体开关电弧的热侵蚀作用是电极损耗的主要成因。石墨电极在电弧作用下发生蒸发并在多次放电后有明显的质量损耗,改变了开关内的气体环境和电极间距,导致开关动作可靠性降低。为研究石墨电极在脉冲电弧冲击下的侵蚀特征,基于开关电弧瞬态扩散特征和石墨材料参数,在弧根区域建立了电弧-电极能量耦合模型,得到了等离子体-固体区域的传热特性。考虑石墨电极的相变特征,计算瞬态热作用下石墨电极的加热范围以及临界相变点,研究瞬态电弧热冲击作用下的石墨电极相变机制。研究结果表明,电弧-电极界面热流主要集中在电弧接触面中心,电弧沉积的能量密度最高可达109 W/m2,石墨在电流上升初期基本处于加热状态,在能量积聚作用下,石墨转变为升华状态,传热强度随半径急剧衰减,蒸发区域略小于电弧半径。通过实验记录了5种开关工况下石墨电极烧蚀形貌和质量损失情况,结果表明,电极质量损失与电弧沉积在电极表面的能量线性相关,近似为0.015 mg/J。研究了电弧关键参数对电极质量损失速率的影响,为延缓电极损耗提供数据支撑。  相似文献   

11.
道路弯道对交通流影响的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
梁玉娟  薛郁 《物理学报》2010,59(8):5325-5331
在经典NaSch模型的基础上,考虑行驶弯道的曲率半径、弧长以及路面的摩擦系数等对车辆运行的影响,提出一种改进的适应特殊路况的单车道元胞自动机模型.按此模型,通过计算机数值模拟,研究了具有不同曲率半径、不同弧长和不同摩擦系数的弯道对交通流的影响.模拟结果显示,改进后的模型能准确反映特殊路况对行驶车辆的影响,同时再现了与实际交通相一致的时停时走交通波等复杂的非线性现象,根据所反映出的实际交通现象,分析得出了增大弯道曲率半径和弯道处的摩擦系数,并尽量地减小弯道弧长,可以减少弯道处交通事故的发生,避免交通拥堵的发生,提高道路通行能力.  相似文献   

12.
The slanted low electrode matrix is designed and fabricated on one tilting 4.5° (1 1 1) silicon wafer to reduce the actuating voltage of 8×8 micro-electromechanical systems (MEMS) optical switch matrix. Due to compact size of the upper electrode chip and (1 1 1) silicon anisotropic etching in KOH solution, photomask is designed which is to fabricate the slanted low electrode matrix that can be matched with the upper electrode chip and every slanted low electrode has enough space for actuating cantilever. The experimental results show that all of the applied voltages for the full range of actuating micromirrors of 8×8 MEMS optical switch matrix are in the range of 67.2±0.5 V. It is demonstrated that the fabricated slanted low electrode matrix has good consistency and every slanted low electrode can be precisely aligned with one-to-one corresponding upper electrodes.  相似文献   

13.
差动式光纤Bragg光栅沉降仪   总被引:2,自引:2,他引:0  
研制了一种测量地表沉降变形的差动式光纤Bragg光栅沉降仪。等强度悬臂梁的底部固定于工地上的固定平台,顶端通过刃口、挂钩和连杆与沉降墩连接。在该测量中,沉降仪将沉降墩的地沉降量转换为悬臂梁的挠度。悬臂梁作用粘贴于其上下表面的光纤Bragg光栅产生应变,即传感光栅的Bragg波长产生了移位。对粘贴在悬臂梁上、下表面的传感光栅的Bragg波长进行差动运算,实现温度补偿,减小人为和气候因素的影响。在挂钩和沉降敦之间采用了螺旋结构连接,可通过调整螺旋或更换不同长度的挂钩来调节传感器的测量范围。荷载实验表明,该沉降仪的测量精度为0.004mm,低于变形测量中的科研级测量精度0.01~0.05mm。  相似文献   

14.
A theoretical model based on the single electron tunneling phenomenon is employed to calculate the time-dependent electrical resistance of an Ag–Ag2S–Pt atomic switch at different applied voltages. While a negative voltage is applied to Pt electrode, Ag atoms precipitate on the surface of Ag2S electrode where they form Ag clusters. The resistance of switch decreases as Ag clusters grow larger between two electrodes. Our model calculations imply the time required to decrease the resistance of switch below the resistance quantum (switching time) is mainly determined by the Coulomb blockade effect of Ag clusters. The switching time is found to decrease exponentially with increasing the applied voltage, which agrees very well with the experimental observations.  相似文献   

15.
In the present paper, another latent capability of SWCNT as a mass sensor is investigated. The relationship between the resonant frequency, dynamic pull-in voltage at the resonance frequency shift, and the attached mass is established by using the nonlocal Euler–Bernoulli beam theory. Using this relationship, a general closed-form nonlinear sensor-equation has been derived for the detection of the mass attached to the SWCNT. The aim of this study and present model is to show the sensitivity of the Cantilevered SWCNT to the values and positions of attached mass. Moreover, the results indicate that by increasing the value of attached mass and considering a single non-local scaling parameter (e0), the values of dynamic pull-in voltage at the resonance frequency shift are decreased. Because of the small scaling parameter (e0), the mass sensitivity of carbon nanotube increases, when the position of the attached mass is in the tip of a Cantilevered SWCNT length. The authority and the accuracy of these formulas are examined with other pull-in sensor equations in literatures. The results demonstrate that the new sensor equation can be applied for CNT-based mass sensors with rational accuracy.  相似文献   

16.
针对设计的一种场畸变气体开关,研究中间电极材料分别为不锈钢和黄铜条件下的烧蚀特性,结合开关寿命期间静态与触发特性的变化规律,获得决定开关寿命的关键因素,为三电极场畸变气体开关的性能优化提供理论支撑。研究结果表明,采用不锈钢和黄铜作为中间电极的烧蚀区域以及表面粗糙度均随着放电次数增加而增大,黄铜电极烧蚀较为严重且表面有明显的烧蚀圆斑,不锈钢电极则具有更高的表面粗糙度,阴阳极表面烧蚀存在明显差异,随着放电次数的增加,击穿点向电极边缘区域集中,影响开关的沿面绝缘特性,是导致开关寿命终结的主要原因。  相似文献   

17.
Microfabricated silicon microcantilevers coated with gold on one side have been used as working electrode in a three-electrode electrochemical arrangement. In addition to electrochemical current, cantilever bending has been used as a signal for monitoring electrode reactions on the cantilever surface. The microcantilever bending was measured by an optical beam deflection method as the surface potential was scanned and electrochemical reactions occurred on the surface. The microcantilever bending due to differential surface stress was used to sense Pb and Cu using cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV).  相似文献   

18.
基于自相位调制和交叉相位调制的全光开关特性研究   总被引:2,自引:2,他引:0  
王菲  郑仰东  李淳飞 《光子学报》2009,38(4):790-795
提出一种优化含有掺铒光纤放大器的非线性Sagnac干涉仪全光开关的新方法,建立了基于自相位调制和交叉相位调制两种解析模型,讨论了掺铒光纤放大器的小信号增益和饱和输出功率对开关性能的影响.分析表明掺铒光纤放大器的性能参量对开关所需要的Sagnac环中光子晶体光纤长度产生限制.当采用相同长度的光子晶体光纤时,基于交叉相位调制方式的全光开关与基于自相位调制方式的全光开关相比能够显著降低开关功率.采用分布傅里叶法数值求解非线性薛定谔方程,优化了开关结构,讨论了重复频率为40 GHz脉宽为5 ps的高斯型信号脉冲在开关时沿Sagnac环的传输特性.模拟结果表明,通过合理选择高非线性光子晶体光纤长度和掺铒光纤放大器的性能参量能够实现超低开关功率(<1 mW)的开关操作.  相似文献   

19.
随着信号输入功率的升高,电容式RF MEMS开关会发生自热效应使膜片变形,引起开关气隙高度的改变,导致开关驱动电压漂移,严重影响其可靠性。由于自热效应的失效机理涉及到复杂的多物理场耦合,因此提出了“电磁-热-应力”的多物理场协同仿真方法描述其失效模式,并分析其失效机理。首先利用HF-SS软件建立开关的电磁仿真模型,得到不同输入功率下膜片的耗散功率;再以此作为热源,利用ePhysics软件建立开关的热仿真模型,得到膜片上的温度分布;然后将温度梯度作为载荷,利用ePhysics软件建立开关的应力仿真模型,得到开关的形变行为;最后,根据膜片形变所致的气隙高度变化,得到驱动电压漂移的失效预测模型。以一种具有矩形膜片结构的典型电容式RFMEMS开关为例,利用该方法得到:矩形膜片表面电流密度主要分布在膜片的长边的边缘;温度沿膜片长边逐渐降低,且膜片中心处温度最高、锚点处温度最低;膜片的热应力变形呈马鞍面形,且最大形变点发生在膜片长边的边缘处,仿真还得到0~5 W输入功率下膜片的最大形变量;并拟合出了0~5W输入功率下的开关驱动电压-输入功率漂移曲线,该曲线具有线性特征并与文献实测数据极为吻合,由此证明了该方法的有效性。  相似文献   

20.
设计并制作了一种用于波长信道选择系统的新型柔性悬臂梁电磁驱动光开关,该光开关采用微光机电系统技术制作,由带有平面螺旋形线圈的聚酰亚胺悬臂梁、圆柱形永磁体、基座以及双面反射棱镜组成.通过改变线圈中激励电流的方向来控制开关动作.运用有限元的方法,模拟分析了线圈与永磁体之间电磁力的分布以及悬臂梁回复力、电磁力与挠度的关系.对该光开关的驱动性能进行了测试,实验结果表明:加载较小的工作电流(0.15A),悬臂梁便可以产生较大的挠度(0.925mm),满足波长信道选择系统光路偏转的要求. 关键词: 微光机电系统 光开关 柔性悬臂梁 电磁驱动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号