首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inverse problem of determining an unknown source term depending on space variable in a parabolic equation is considered. A numerical algorithm is presented for recovering the unknown function and obtaining a solution of the problem. As this inverse problem is ill‐posed, Tikhonov regularization is used for finding a stable solution. For solving the direct problem, a Galerkin method with the Sinc basis functions in both the space and time domains is presented. This approximate solution displays an exponential convergence rate and is valid on the infinite time interval. Finally, some examples are presented to illustrate the ability and efficiency of this numerical method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

2.
A Legendre pseudospectral method is proposed for solving approximately an inverse problem of determining an unknown control parameter p(t) which is the coefficient of the solution u(x, y, z, t) in a diffusion equation in a three‐dimensional region. The diffusion equation is to be solved subject to suitably prescribed initial‐boundary conditions. The presence of the unknown coefficient p(t) requires an extra condition. This extra condition considered as the integral overspecification over the spacial domain. For discretizing the problem, after homogenization of the boundary conditions, we apply the Legendre pseudospectral method in a matrix based manner. As a results a system of nonlinear differential algebraic equations is generated. Then by using suitable transformation, the problem will be converted to a homogeneous time varying system of linear ordinary differential equations. Also a pseudospectral method for efficient solving of the resulted system of ordinary differential equations is proposed. The solution of this system gives the approximation to values of u and p. The matrix based structure of the present method makes it easy to implement. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed computational procedure. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 74‐93, 2012  相似文献   

3.
We study the unique solvability of the inverse problem of determining the righthand side of a parabolic equation whose leading coefficient depends on both the time and the spatial variable under an integral overdetermination condition with respect to time. We obtain two types of condition sufficient for the local solvability of the inverse problem as well as study the so-called Fredholm solvability of the inverse problem under consideration.Translated from Matematicheskie Zametki, vol. 77, no. 4, 2005, pp. 522–534.Original Russian Text Copyright © 2005 by V. L. Kamynin.This revised version was published online in April 2005 with a corrected issue number.  相似文献   

4.
In this study, we consider a coefficient problem of a quasi-linear two-dimensional parabolic inverse problem with periodic boundary and integral over determination conditions. We prove the existence, uniqueness and continuously dependence upon the data of the solution by iteration method. Also, we consider numerical solution for this inverse problem by using linearization and the implicit finite-difference scheme.  相似文献   

5.
In this article, we develop a parameter uniform numerical method for a class of singularly perturbed parabolic equations with a multiple boundary turning point on a rectangular domain. The coefficient of the first derivative with respect to x is given by the formula a0(x, t)xp, where a0(x, t) ≥ α > 0 and the parameter p ∈ [1,∞) takes the arbitrary value. For small values of the parameter ε, the solution of this particular class of problem exhibits the parabolic boundary layer in a neighborhood of the boundary x = 0 of the domain. We use the implicit Euler method to discretize the temporal variable on uniform mesh and a B‐spline collocation method defined on piecewise uniform Shishkin mesh to discretize the spatial variable. Asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular component. These bounds are applied in the convergence analysis of the proposed scheme on Shishkin mesh. The resulting method is boundary layer resolving and has been shown almost second‐order accurate in space and first‐order accurate in time. It is also shown that the proposed method is uniformly convergent with respect to the singular perturbation parameter ε. Some numerical results are given to confirm the predicted theory and comparison of numerical results made with a scheme consisting of a standard upwind finite difference operator on a piecewise uniform Shishkin mesh. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1143–1164, 2011  相似文献   

6.
The reconstruction of an unknown solely time‐dependent Dirichlet boundary condition in a nonlinear parabolic problem containing a linear and a nonlinear Volterra operator is considered. The inverse problem is converted into a variational problem in which the unknown Dirichlet condition is eliminated using a given integral overdetermination. A time‐discrete recurrent approximation scheme is designed, using Backward Euler's method. The convergence of the approximations towards a solution of the variational problem is proved under appropriate assumptions on the data and on the Volterra operators. The uniqueness of this solution is shown in the case that the nonlinear Volterra operator satisfies a particular inequality. Moreover, the Finite Element Method is used to discretize the time‐discrete approximation scheme in space. Finally, full‐discrete error estimates are derived for a particular choice of the finite elements. The corresponding convergence rates are supported by a numerical experiment. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1444–1460, 2015  相似文献   

7.
In this paper, the inverse problem of finding the time‐dependent coefficient of heat capacity together with the solution periodic boundary and integral overdetermination conditions is considered. Under some natural regularity and consistency conditions on the input data, the existence, uniqueness, and continuous dependence upon the data of the solution are shown. Some considerations on the numerical solution for this inverse problem are presented with an example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, the identification of an unknown time-dependent source term in an inverse problem of parabolic type with nonlocal boundary conditions is considered. The main approach is to change the inverse problem to a system of Volterra integral equations. The resulting integral equations are convolution-type, which by using Sinc-collocation method, are replaced by a system of linear algebraic equations. The convergence analysis is included, and it is shown that the error in the approximate solution is bounded in the infinity norm by the norm of the inverse of the coefficient matrix multiplied by a factor that decays exponentially with the size of the system. To show the efficiency of the present method, an example is presented. The method is easy to implement and yields very accurate results.  相似文献   

9.
The fully Sinc‐Galerkin method is developed for a family of complex‐valued partial differential equations with time‐dependent boundary conditions. The Sinc‐Galerkin discrete system is formulated and represented by a Kronecker product form of those equations. The numerical solution is efficiently calculated and the method exhibits an exponential convergence rate. Several examples, some with a real‐valued solution and some with a complex‐valued solution, are used to demonstrate the performance of this method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

10.
In this paper, the inverse problem of finding the time‐dependent coefficient of heat capacity together with the solution of heat equation with nonlocal boundary and overdetermination conditions is considered. The existence, uniqueness and continuous dependence upon the data are studied. Some considerations on the numerical solution for this inverse problem are presented with the examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
An inverse problem concerning diffusion equation with a source control parameter is investigated. The approximation of the problem is based on the Legendre multiscaling basis. The properties of Legendre multiscaling functions are first presented. These properties together with Galerkin method are then utilized to reduce the inverse problem to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
In this paper, we consider an inverse source problem of identification of F(t) function in the linear parabolic equation ut = uxx + F(t) and u0(x) function as the initial condition from the measured final data and local boundary data. Based on the optimal control framework by Green's function, we construct Fréchet derivative of Tikhonov functional. The stability of the minimizer is established from the necessary condition. The CG algorithm based on the Fréchet derivative is applied to the inverse problem, and results are presented for a test example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This work studies the inverse problem of reconstructing an initial value function in the degenerate parabolic equation using the final measurement data. Problems of this type have important applications in the field of financial engineering. Being different from other inverse backward parabolic problems, the mathematical model in our article may be allowed to degenerate at some part of boundaries, which may lead to the corresponding boundary conditions missing. The conditional stability of the solution is obtained using the logarithmic convexity method. A finite difference scheme is constructed to solve the direct problem and the corresponding stability and convergence are proved. The Landweber iteration algorithm is applied to the inverse problem and some typical numerical experiments are also performed in the paper. The numerical results show that the proposed method is stable and the unknown initial value is recovered very well.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1900–1923, 2017  相似文献   

14.
In this article, we want to solve a free boundary problem which models tumor growth with drug application. This problem includes five time dependent partial differential equations. The tumor considered in this model consists of three kinds of cells, proliferative cells, quiescent cells, and dead cells. Three different first‐order hyperbolic equations are given that describe the evolution of cells and other two second‐order parabolic equations describe the diffusion of nutrient and drug concentration. We solve the problem using the collocation method. Then, we prove stability and convergence of method. Also, some examples are considered to show the efficiency of method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The investigation of nonclassical parabolic initial‐boundary value problems, which involve an integral over the spatial domain of a function of the desired solution, is of considerable concern. In this article a parabolic partial differential equation subject to energy overspecification is studied. This problem is appeared in modeling of many physical phenomena. The Adomian decomposition method, which is an efficient method for solving various class of problems, is employed for solving this model. This method provides an analytical solution in terms of an infinite convergent power series. Some examples are reported to support the simplicity of the decomposition procedure of Adomian. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

16.
We first define the pseudo almost periodic functions in a more general setting.Then we show the existence,uniqueness and stability of pseudo almost periodic solutions of parabolic inverse problems for a type of boundary value problems.  相似文献   

17.
In this paper, a model problem that can be used for mathematical modeling and investigation of arc phenomena in electrical contacts is considered. An analytical approach for the solution of a two‐phase inverse spherical Stefan problem where along with unknown temperature functions heat flux function has to be determined is presented. The suggested solution method is obtained from a new form of integral error function and its properties that are represented in the form of series whose coefficients have to be determined. Using integral error function and collocation method, the solution of a test problem is obtained in exact form and approximately.  相似文献   

18.
The aim of this paper is to draw attention to an interesting semilinear parabolic equation that arose when describing the chaotic dynamics of a polymer molecule in a liquid. This equation is nonlocal in time and contains a term, called the interaction potential, that depends on the time‐integral of the solution over the entire interval of solving the problem. In fact, one needs to know the “future” in order to determine the coefficient in this term, that is, the causality principle is violated. The existence of a weak solution of the initial boundary value problem is proven. The interaction potential satisfies fairly general conditions and can have arbitrary growth at infinity. The uniqueness of this solution is established with restrictions on the length of the considered time interval.  相似文献   

19.
This paper is concerned with the numerical solution of delay integro‐differential equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Taylor polynomials for the numerical solution of delay integro‐differential equations. It is shown that this method is convergent. Numerical illustrations confirm our theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A two‐dimensional convection‐diffusion problem of parabolic type is considered. A multidomain decomposition algorithm with nonoverlapping subdomains based on a upwind scheme and on a piecewise equidistant mesh is investigated. Uniform in a perturbation parameter convergence properties of the algorithm are established. Numerical experiments complement the theoretical results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号