首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
扶手椅型石墨纳米带的双空位缺陷效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基于密度泛函理论的第一性原理电子结构和输运性质计算,研究了扶手椅型石墨纳米带(具有锯齿边缘)的双空位缺陷效应.研究发现:双空位缺陷的存在并没有改变石墨纳米带的金属特性,但改变了费米面附近的能带结构.同时,双空位缺陷的取向对石墨纳米带的输运性质有很重要的影响.对于奇数宽度的纳米带,斜向双空位缺陷使得石墨带导电性能减弱,而垂直双空位能基本保留原有的线性伏安特性,导电性能降低较少;对于偶数宽度的纳米带,斜向双空位缺陷会使石墨带导电性能明显增强,而垂直双空位缺陷则具有完整石墨带的输运性质. 关键词: 石墨纳米带 585双空位缺陷 电子结构 输运性质  相似文献   

2.
Using the first principles calculations associated with nonequilibrium Green?s function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.  相似文献   

3.
Systematic first principle calculations have been used to explain the dangling bonds behaviour in the rolling up of a boron nitride nanoribbon (BNNR) to construct a single-walled boron nitride nanotube (BNNT). We found in armchair BNNR two degenerate dangling bonds split and move up to higher energies due to symmetry breaking of system. While in zigzag BNNR changing the topology of system does not affect on metallic features of the band structure, but in unzipped BNNT case a metallic-semimetallic phase transition occurs. Considering the width dependent electronic properties of hydrogen passivated armchair BNNRs, exhibit zigzag behaviour of energy gap in agreement with previous results.  相似文献   

4.
We investigate the strain effects on the electronic properties of boron nitride nanoribbons (BNNFts) by using firstprinciples calculations. The results show that the energy gap of BNNRs with both armchair edges (A-BNNRs) and zigzag edges (Z-BNNFts) decreases as the strain increases. As strain increases, the energy gaps of Z-BNNRs decrease rapidly as the width increases and reduce significantly to small values, which makes Z-BNNRs change from wide-gap to narrow-gap semiconductors.  相似文献   

5.
《Physics letters. A》2014,378(5-6):565-569
The band-gap modulation of zigzag and armchair graphane-like SiC nanoribbons (GSiCNs) under uniaxial elastic strain is investigated using the density functional theory. The results show that band gap of both structures all decreases when being compressed or tensed. In compression, both zigzag and armchair GSiCNs are semiconductors with a direct band gap. However, in tension, the armchair GSiCNs undergo a direct-to-indirect band-gap transition but the zigzag GSiCNs still have a direct band gap. These results are also proved by HSE06 method. This implies a potential application of the graphane-like SiC nanoribbons in the future pressure sensor and optical electronics nanodevices.  相似文献   

6.
The structural, electronic, elastic, mechanical properties and stress-strain relationship of chair, boat, and stirrup conformers of fully hydrogenated h-BN(fh-BN) are investigated in this work using the Perdew-Burke-Ernzerhof(PBE) function in the frame of density functional theory. The achieved results for the lattice parameters and band gaps of three conformers in this research are in good accordance with other theoretical results. The band structures of three conformers show that the chair, boat, and stirrup are direct band gap with a band gaps of(3.12, 4.95, and4.95 e V), respectively. To regulate the band structures of fh-BN, we employ a hybrid functional of Heyd-ScuseriaErnzerhof(HSE06) calculations and the band gaps are 3.84(chair), 6.12(boat), and 6.18 e V(stirrup), respectively.The boat and stirrup fh-BN exhibits varying degrees of mechanical anisotropic properties with respect to the Young's modulus and Poisson's ratio, while the chair fh-BN exhibits the mechanical isotropic properties. Furthermore, tensile strains are applied in the armchair and zigzag directions related to tensile deformation of zigzag and armchair nanotubes,respectively. We find that the ultimate strains in zigzag and armchair deformations in stirrup conformer are 0.34 and0.25, respectively, larger than the strains of zigzag(0.29) and armchair(0.18) deformations in h-BN although h-BN can surstain a surface tension up to the maximum stresses higher than those of three conformers of fh-BN. Furthermore, the band gap energies in three conformers can be modulated effectively with the biaxial tensile strain.  相似文献   

7.
The electro-optical properties of zigzag and armchair BNNTs in a uniform transverse electric field are investigated within tight binding approximation. It is found that the electric field modifies the band structure and splits band degeneracy where these effects reflect in the DOS and JDOS spectra. A decrease in the band gap, as a function of the electric field, is observed. This gap reduction increases with the diameter and it is independent of chirality. An analytic function to estimate the electric field needed for band gap closing is proposed which is in good agreement with DFT results. In additional, we show that the larger diameter tubes are more sensitive than small ones. Number and position of peaks in DOS and JDOS spectra for armchair and zigzag tubes with similar radius are dependent on electric field strength.  相似文献   

8.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

9.
袁剑辉  程玉民  张振华 《物理学报》2009,58(4):2578-2584
用分子动力学方法对不同空位缺陷的扶手椅型与锯齿型单壁C纳米管杨氏弹性模量进行了计算和分析. 结果表明:扶手椅型(5, 5), (10,10)和锯齿型(9, 0), (18, 0) 纳米管在无缺陷时其杨氏模量分别为948,901和804,860 GPa. 随管径的增大,扶手椅型和锯齿型单壁C纳米管弹性模量分别减小和增大,表现出完全不同的变化规律. 随着C纳米管中单点空位缺陷的均匀增加,杨氏模量下降,当缺陷比率增加到一定程度时,杨氏模量下降骤然趋缓,形成一下降平台;双空位缺陷对C纳米管杨氏模量的影响与其分布方向有关;随单点空位缺陷间原子数的增加,在轴向上,杨氏模量下降到某一值小幅波动,而在周向上杨氏模量先下降,然后上升到某一稳定值. 随两单点空位缺陷的空间距离进一步增大,杨氏模量又呈微降趋势. 通过分子间σ键与π键特征及缺陷间近程电子云耦合作用规律与空位缺陷内部5-1DB缺陷的形成特点等理论对上述规律进行了分析. 关键词: 空位缺陷 C纳米管 分子动力学 杨氏模量  相似文献   

10.
A study of step edges in graphite with different atomic structures combining Raman spectroscopy and scanning probe microscopy is presented. The orientation of the carbon hexagons with respect to the edge axis, in the so-called armchair or zigzag arrangements, is distinguished spectroscopically by the intensity of a disorder-induced Raman peak. This effect is explained by applying the double resonance theory to a semi-infinite graphite crystal and by considering the one-dimensional character of the defect.  相似文献   

11.
Frank J. Owens 《Molecular physics》2013,111(21-23):2441-2443
The electronic properties, band gap and ionization potential as well as the energies of the singlet and triplet states of zigzag and armchair graphene nanoribbons are calculated as a function of the number of oxygen atoms on the ribbon employing density functional theory at B3LYP/6-31G* level. The calculated band gaps indicate that both structures are semiconducting. The band gap of the armchair ribbons initially decreases followed by an increase with oxygen number. For zigzag ribbons the band gap decreases with increasing oxygen number whereas the ionization potential increases with oxygen content. In both armchair and zigzag ribbons the ionization potential shows a gradual increase with the number of oxygen atoms. Some of the oxygenated ribbons calculated have triplet ground states and have the density of states at the Fermi level for spin down greater than spin up suggesting the possibility they may be ferromagnetic semiconductors.  相似文献   

12.
First-principles calculations have been employed to investigate the structural transformation and direct to indirect band gap transition of ZnO nanotubes under uniaxial strain. The results show that armchair and zigzag nanotubes can be transformed to each other via unusual fourfold-coordinated structures under the applied strain. Both the armchair and zigzag nanotubes exhibit direct band gap while the unusual fourfold-coordinated ones display indirect band gap. The origin of such a direct-to-indirect band gap transition is explained based on the analyses of atomic orbital contributions.  相似文献   

13.
许俊敏  胡小会  孙立涛 《物理学报》2012,61(2):27104-027104
本文采用基于密度泛函理论(DFT)的第一性原理计算了铂原子填充扶手椅型石墨烯纳米带(AGNR)中双空位结构的电学性能.计算结果表明: 通过控制铂原子的掺杂位置, 可以实现纳米带循环经历小带隙半导体—金属—大带隙半导体的相变过程; 纳米带边缘位置是铂原子掺杂的最稳定位置, 边缘掺杂纳米带的带隙值随宽度的变化与本征AGNR一样可用三簇曲线表示, 但在较大宽度时简并成两条曲线, 一定程度上抑制了带隙值的振荡; 并且铂原子边缘掺杂导致宽度系数Na = 3p和3p + 1(p是一个整数)的几个较窄纳米带的带隙中出现杂质能级, 有效地降低了其过大的带隙值. 此外, 铂掺杂AGNR的能带结构对掺杂浓度不是很敏感, 从而降低了对实验精度的挑战. 本文的计算有利于推动石墨烯纳米带在纳米电子学方面的应用.  相似文献   

14.
We have studied the electronic structures of arsenene nanoribbons with different edge passivations by employing first-principle calculations. Furthermore, the effects of the defect in different positions on the transport properties of arsenene nanoribbons are also investigated. We find that the band structures of arsenene nanoribbons are sensitive to the edge passivation. The current-voltage characteristics of unpassivated and O-passivated zigzag arsenene nanoribbons exhibit a negative differential resistance behavior, while such a peculiar phenomenon has not emerged in the unpassivated and O-passivated armchair arsenene nanoribbons. The vacant defects on both top and bottom edges in unpassivated armchair arsenene nanoribbon can make its current-voltage characteristic also present a negative differential resistance behavior. After expanding the areas of the top and bottom defects in unpassivated armchair arsenene nanoribbon, the peak-to-valley ratio of the negative differential resistance behavior can be enlarged obviously, which opens another way for the application of arsenene-based devices with a high switching ratio.  相似文献   

15.
F. Buonocore 《哲学杂志》2013,93(7):1097-1105
In this paper we investigate nitrogen- and boron-doped zigzag and armchair single-wall carbon nanotubes (SWNTs) with theoretical models based on the density functional theory. We take into account nitrogen and boron doping for two isomers in which substitutive atoms are on opposite sides of the tube, but only in one isomer the impurity sites are symmetrical with respect to the diameter. The band structures show a strong hybridization with impurity orbitals that change the original band structure. Although the two isomers of armchair SWNT exhibit the same formation energy, their band structures are different. Indeed asymmetrical isomers are gapless and exhibit a crossing of valence and conduction bands at k?=?π/c, leading to metallic SWNTs. Band structures of symmetrical isomers, on the other hand, exhibit an energy gap of 0.4?eV between completely filled valence and empty conduction bands. We use density of charge in order to understand this difference. In zigzag SWNT an impurity band is introduced in the energy gap and for N doping this band is just partially occupied in such a way that the electronic behaviour is reversed from semiconductor to metallic. Whereas for a given isomer armchair SWNT shows similar behaviours of N- and B-doped structures, B-doped zigzag SWNTs present different band structure and occupation compared to the N-doped case.  相似文献   

16.
First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between π? and π subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.  相似文献   

17.
By employing molecular mechanics and molecular dynamics simulations, we investigate the radial collapses and elasticities of different chiral single-walled carbon nanotubes(SWCNTs) with divacancy, and 5-8-5 defects. It is found that divacancy and 5-8-5 defect can reduce the collapse pressure(Pc) of SWCNT(10, 10) while 5-8-5 defect can greatly increase Pc of SWCNT(17, 0). For example, 5-8-5 defect can make Pc of SWCNT(17, 0) increase by 500%. A model is established to understand the effects of chirality, divacancy, and 5-8-5 defect on radial collapse of SWCNTs. The results are particularly of value for understanding the mechanical behavior of SWCNT with divacancy, and the 5-8-5 defect that may be considered as a filler of high loading composites.  相似文献   

18.
By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.  相似文献   

19.
The electrical properties and NMR parameters of the pristine and Ga-doped structures of two representative (8, 0) zigzag and (4, 4) armchair of boron phosphide nanotubes (BPNTs) have been investigated. The structural geometries of above nanotubes have been allowed to relax by optimization and then the isotropic and anisotropic chemical shielding parameters (CSI and CSA) of 11B and 31P have been calculated based on DFT theory. The results reveal that the influence of Ga-doping was more significant on the geometries of the zigzag model than the armchair one. The difference of band gap energies between the pristine and Ga-doped armchair BPNTs was larger than the zigzag model. Significant differences of NMR parameters of those nuclei directly contributed to the Ga-doping atoms have been observed.  相似文献   

20.
A single-wall carbon nanotube (SWCNT) can be visualized as a graphene rolled into a cylinder. Tight-binding band structure calculations, with hopping between nearest-neighbor π orbitals only (NNTB), established rules by which both the mode in which the graphene is rolled up and the diameter determine whether the SWCNT is a metal or a semiconductor. However, when the diameter of the SWCNT is ultra-small its large curvature results in the breakage of these rules. In this work, we studied zigzag (n, 0) SWCNTs with diameters smaller than 0.7 nm using a π orbital-only tight-binding model including anisotropy in the hopping between next-nearest-neighbor sites (ANNNTB). Band overlaps were found in the electronic band structures of the zigzag SWCNTs for n=3, 4, 5, and 6, indicating that they are metals. The reason why the band structures of armchair and chiral SWCNTs are less affected by curvature effects becomes clear with the ANNNTB model, as does the reason why non-degenerate states cause band overlaps of the zigzag SWCNTs for n=3, 4, 5, and 6. Our results show that a π orbital-only tight-binding model is able to describe both the band overlaps and gaps obtained by ab initio calculations for zigzag SWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号