首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taken into account the presences of Li vacancy (VLi), we calculate the formation energy, electronic structure and optical properties of Cu doped LiF (LiF:Cu) by using the density functional theory. The presence of VLi leads to a decrease of the formation energies of Cu, in favor of Cu doping into LiF. Due to Cu doping, an impurity band of Cu-3d states is formed at the Fermi level, which is then split by the introduction of VLi. A wide absorption band and some new absorption peaks are obtained in LiF:Cu with an adjacent VLi to Cu. There appears an absorption peak at 9.3 eV, which is consistent with the experiment observation (133 nm). The results are useful for understanding of the optical properties of the doped systems.  相似文献   

2.
3.
基于密度泛函理论的第一性原理对二维拓扑相1T′-MoS2和2M-MoS2的电子结构、有效质量和光学性质进行研究,并将其与二维H-MoS2进行对比分析.研究表明,电子有效质量大小关系为:2M-MoS222,空穴有效质量大小关系为:T′-MoS2<2M-MoS22,但2M-MoS2的空穴有效质量和T′-MoS2相差不大,二者均适用于高性能电子器件.由于拓扑相1T′-MoS2和2M-MoS2均存在能带反转,导致带间相关性以及导带和价带的波函数重叠增强,进而光电流响应增强,二者的光学性质均优于H-MoS2. 2M-MoS2具有较大的吸收系数和光电导率,2M-MoS2对红外光和紫外光有着优...  相似文献   

4.
基于密度泛函理论(DFT)的广义梯度近似(GGA),采用第一性原理方法研究了气体分子吸附对V掺杂石墨烯的吸附能、电子结构与光学性质的影响.能带结构计算表明:吸附NO2分子的V掺杂石墨烯的带隙显著增加,从0 e V变为0.368 e V,由金属性转变为半导体特性,而吸附CO与NH3分子的V掺杂石墨烯的带隙则变化很小.三种吸附构型(NO2,CO,NH3)的吸附能分别为-8.499 e V、-2.05 e V和-2.01e V,说明V掺杂石墨烯对NO2气体分子吸附最强.进而计算了本征、V掺杂石墨烯及其吸附NO2分子的光学性质,结果表明:随着V掺杂与吸附NO2气体,石墨烯介电吸收峰值有所增大,介电峰位向低能量区域移动;本征石墨烯仅吸收紫外光,V掺杂石墨烯吸附NO2分子可以明显拓宽光吸收的光谱范围;掺杂与吸附使得石墨烯光电导率显著增强,能在红外与可见光区产生光电流.上述结果表明V掺杂石墨烯吸附NO2后...  相似文献   

5.
We performed total energy electronic-structure calculations based on DFT that clarify the intrinsic magnetism of undoped GaN. The magnetism is due to Ga, instead of N, vacancies. The origin of magnetism arises from the unpaired 2p electrons of N surrounding Ga vacancy. At a vacancy concentration of 5.6%, the ferromagnetic state is 181 meV lower than the antiferromagnetic state. Our findings are helpful to gain a more novel understanding of structural and spin properties of Ga vacancy in wurtzite GaN and also provide a possible way to generate magnetic GaN by introducing Ga vacancies instead of doping with transition-metal atoms.  相似文献   

6.
Wang-Li Tao  Yi Mu  Guang-Fu Ji 《哲学杂志》2019,99(8):1025-1040
Motivated by the synthesis of a Janus monolayer, the new PtSSe transition-metal dichalcogenide (TMD) have attracted remarkable attention due to their characteristic properties. In this work, we calculated the electronic structure, optical properties, and the thermal conductivity of the PtSSe monolayers, and performed a detailed comparison with other TMDs (monolayer PtS2 and PtSe2) using first-principles calculations. The calculated band gaps of the PtS2, PtSSe, and PtSe2 monolayers were 1.76, 1.38, and 1.21?eV, respectively, which are in good agreement with experimental data. At the same time, we observed a larger spin-orbit splitting in the electronic structure of PtSSe monolayers. The optical properties were also calculated and a significant red shift was observed from the PtS2 to PtSSe to PtSe2 monolayers. The lattice thermal conductivity of the PtSSe monolayer at room temperature (36.19?W/mK) is significantly lower than that of the PtS2 monolayer (54.25?W/mK) and higher than that of the PtSe2 monolayer (18.07?W/mK). Our results show that the PtSSe monolayer breaks structural symmetry and has the same ability to reduce the thermal conductivity as MoSSe and ZrSSe monolayers due to the shorter group velocity and the lower converged phonon scattering rate. These results may stimulate further studies on the electronic structure, optical properties, and thermal conductivity of the PtSSe monolayer in both experimental synthesis and theoretical efforts.  相似文献   

7.
用全电势线性缀加平面波法加局域轨道方法调查了黄铜矿半导体CuInS2的结构、电子和光学特性。我们计算的带隙0.17 eV是直接的,其它实验和理论也表明这种材料有一个直接带隙。在 In 4d和S 3p轨道之间有相当强的杂化,构成了(InS2)4-阴离子。我们计算的反射率光谱,介电函数的实部和虚部,消光系数和折射率和实验结果取得了很好的一致。  相似文献   

8.
《Physics letters. A》2020,384(26):126637
The electronic, magnetic properties and optical absorption of vanadium (V) doped rutile TiO2 have been studied by the generalized gradient approximation GGA and GGA+U (Hubbard coefficient) approach respectively. On the one hand, we consider the influence of vanadium with different doping concentration on the electronic structure. On the other hand, we study double V atoms doped TiO2, mainly study four V-doped TiO2 configurations, and find the magnetic ground states are ferromagnetic state. For the TiO2@V-V1, TiO2@V-V3 and TiO2@V-V4 configurations without O ion as bridge between V-V atoms, there will have a metastable state of antiferromagnetic configurations, while, for the TiO2@V-V2 configurations with an O ion as bridge between V-V atoms, due to the existence of superexchange between V-O-V, there will only exist the ground state of ferromagnetic state and there are no other metastable configurations. Furthermore, the optical properties of V-doped TiO2 are calculated. The results show that the V-doped TiO2 has strong infrared light absorption and visible light absorption.  相似文献   

9.
10.
《Physics letters. A》2019,383(32):125933
Orthorhombic-Pmm2-BC2N as a superhard photocatalyst simulates great interests in the researches of materials-design and application. To promote the studies of Pmm2 BC2N as a multifunctional material with both great hardness and good optical properties, we investigated the electronic and optical properties of Pmm2 BC2N with various vacancy-defects by the systematic first-principles density functional theory (DFT) calculations in this work. The absorption, refractivity, reflectivity, and photoconductivity of considered structures were calculated and explored. The various characteristics of the optical properties were analyzed based on relative computed density of states (DOS).  相似文献   

11.
The structural, electronic and optical properties of GaP, GaAs and GaSb at ambient and under hydrostatic pressure have been calculated using the full potential linear augmented plane wave (FP-LAPW) method. The calculated lattice constant, bulk modulus and its pressure derivative are compared with available experimental data. The first and second order pressure coefficients for the (Γ-Γ) energy gaps and hydrostatic deformation potential shows agreement with measurement. The linear pressure coefficients of the transition (Γ-Γ) increases significantly as anion atomic number increases (GaPGaAsGaSb). The magnitude of linear pressure coefficient of the transition (Γ-X) are small and usually negative. The variation of linear pressure coefficient of the transition (Γ-L) are relatively small and follow similar trend as (Γ-Γ). Overall the calculated linear and nonlinear pressure coefficients show good agreement with the experimental data. The obtained dielectric function, refractive index, extinction coefficient and reflectivity are compared with measured data and show qualitatively good agreement.  相似文献   

12.
Electronic and optical properties of CuGaS2: First-principles calculations   总被引:1,自引:0,他引:1  
Electronic structure and optical properties of CuGaS2 are calculated using the full potential linearized augmented plane wave plus local orbitals method. The calculated equilibrium lattice is in reasonable agreement with the experimental data. The electronic structures indicate that CuGaS2 is a semiconductor with a direct bandgap of 0.81802 eV. Furthermore, other experiments and theory also show that this material has a direct bandgap. It is noted that there is quite strong hybridization between Ga 3d and S 3s orbitals, which belongs to the (GaS2). The complex dielectric functions are calculated, which are in good agreement with the available experimental results.  相似文献   

13.
Based on the density functional theory, electronic and optical properties of a monolayer scandium nitride structure have been studied under different strain conditions. Our results indicate that both biaxial compressive and tensile strain effects lead to change the band gap of this structure with different rates. Also, optical absorption spectrum peaks experience an obvious red and blue shifts with the exerting of tensile and compressive strains, respectively. Our results express that ScN monolayer can be the promising candidate for the future nano-base electrical and optical devices.  相似文献   

14.
The first-principles calculations are performed within the density functional theory to investigate the crystal structure, energy band structure, density of states, optical properties, and bonding properties of strontianite. The optimized structure parameters and bonding results with the generalized gradient approximation (GGA) functional and the localized density approximation (LDA) functional are in good agreement with the earlier experimental data. The band structure, density of states and chemical bonding of strontianite have been calculated and analyzed. The indirect band gap of strontianite is estimated to be ~4.45 eV (GGA) or ~4.24 eV (LDA). The absorption, reflectivity, refractive index and extinction coefficient have been calculated using the imaginary part of the dielectric function. The calculated results of the optical properties show that strontianite has an optical anisotropy along [100] (or [010]) and [010] polarization directions of incoming light. Furthermore, the calculated results of the density of states and Mulliken population indicate that the interactions among atoms are both ionic and covalent bonding in strontianite.  相似文献   

15.
In view of important role of inducing and manipulating the magnetism in 2D materials for the development of low-dimensional spintronic devices, the magnetism of GaN monolayer with Ga vacancy and nonmagnetic chemical doping are investigated using first-principles calculations. It is found that pure GaN monolayer has graphene-like structure and is nonmagnetic. While, a neutral Ga vacancy can induce 3 μB intrinsic magnetic moment, localized mainly on the neighboring N atoms. Interestingly, after one Mg or Si atom doping in g-GaN with Ga vacancy, the magnetic moment can be modified to 4 μB or 2 μB respectively due to the change in hole number. Meantime, Mg-doped g-GaN with Ga vacancy shows half-metal character. With the increasing of doping concentrations, the magnetic moment can be further tuned. The results are interesting from a theoretical point of view and may open opportunities for these 2D GaN based materials in magnetic devices.  相似文献   

16.
《Physics letters. A》2020,384(8):126172
The electronic and optical properties of undoped, N single-doped, S single-doped, and S-N co-doped ZnO were systematically investigated by first-principles calculations. The lattice parameters of S single-doped and S-N co-doped ZnO clearly increased. After N-doping, a strongly localized impurity energy level of N was formed near the Fermi level at the top of valence band (VB). In S-N co-doped ZnO, the localization of N weakened, and the Fermi level went deeper into the VB, indicating that the acceptor energy level of N formed in S-N co-doped system became shallower due to the effect of 3p state of S. Therefore, S-N co-doping is beneficial to obtain p-type ZnO with a higher hole concentration than N single-doping. Compared with undoped ZnO, the static dielectric constant, absorption coefficient, refractive index, energy loss function, and reflectivity of N single-doped, S single-doped, and S-N co-doped ZnO exhibited an increase in low-energy area.  相似文献   

17.
利用基于密度泛函理论的第一性原理超软赝势平面方法研究了外界压强对LiNbO_3晶体态密度,能带结构,电荷密度以及光学性质的影响.能带结构计算表明,价带顶主要由O-2p和Nb-4d态电子贡献,导带底主要由Nb-4d态电子贡献,且带隙随着压强的增加而线性增大.利用复介电函数计算了LiNbO_3晶体在不同压强下光学性质的折射率、反射率、吸收函数,能量损失函数以及光电导率.研究发现:外界压强大于10GPa时,静态折射率保持不变,随外界压强的增加,反射率、吸收函数以及光电导率区间有一定程度的拓宽,损失函数峰发生"蓝移".研究表明,外界高压可以有效调控LiNbO_3晶体的电子结构和光学性质,为LiNbO_3晶体的高压应用提供了有益的理论依据.  相似文献   

18.
利用基于密度泛函理论的第一性原理超软赝势平面方法研究了外界压强对LiNbO3晶体波态密度,能带结构,电荷密度以及光学性质的影响.能带结构计算表明,价带顶主要由O-2p和Nb-4d态电子贡献,导带底主要由Nb-4d态电子贡献,且带隙随着压强的增加而线性增大.利用复介电函数计算了LiNbO3晶体在不同压强下光学性质的折射率、反射率、吸收系数,能量损失函数以及光电导率. 研究发现:外界压强大于10Gpa时,静态折射率保持不变,随外界压强的增加,反射率、吸收函数以及光电导率区间有一定程度的拓宽,损失函数峰发生“蓝移”.研究表明,高压可以有效调控LiNbO3晶体的电子结构和光学性质,为LiNbO3晶体的高压应用提供了有益的理论依据.  相似文献   

19.
《Physics letters. A》2020,384(26):126663
Based on the density functional theory, we discussed the electronic and optical properties of graphene/ WSe2 (GW) heterostructure after lanthanides doping. Red shift appears and the optical parameter values are improved in the low energy region after the lanthanides are doped. Different doping types are also discussed. In the case of single doping, substitute Yb atom on W site will improve the peak values of the optical parameters greatly. In the case of co-doping, it is found that the effect will be more obvious when the two doped lanthanide atoms are located in the second neighboring positons. These results suggest that lanthanides doping does adjust the electronic structure and improve the optical properties of GW heterostructures, which providing useful guidance for the design of novel optical nanodevices based on two-dimensional materials.  相似文献   

20.
本文基于第一性原理平面波赝势(PWP)和广义梯度近似(GGA)方法,对闪锌矿型AlSb的超晶胞、掺入杂质Mn和Fe超晶胞进行结构优化处理。计算了三种体系下AlSb超晶胞的电子结构、Mullkien电荷数和光学性质,详细研究了其能带结构、电子态密度、电荷布局分布和光学性质。结果表明:在Mn,Fe掺杂AlSb体系中,由于空穴密度的增加,禁带宽度减小,材料表现出半金属行为,且在可见光区电子跃迁明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号