首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
A periodic Density Functional Theory (DFT) study using Generalized Gradient Approximation (GGA) of the Ti deposition on a clean Si (100) surface was carried out. The results indicate that Ti adsorbs preferentially on two Si dimers forming polar covalent bonds with four Si atoms. The analysis of the Density of states (DOS) indicates that Ti 3d orbitals hybridize with the surface orbitals near the Fermi level and each Ti atom transfers one electron to the surface even at concentration of 6.8 × 1014 Ti atom cm? 2. At this concentration, a quite stable TiSi monolayer is formed and subsequent additions of Ti atoms would initiate metallic Ti growth on the TiSi interface.  相似文献   

2.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

3.
《Current Applied Physics》2010,10(3):734-739
CdxZn1−xSe films (0  x  1) were deposited for the first time by the pulse plating technique at different duty cycles in the range 6–50% at room temperature from an aqueous bath containing zinc sulphate, cadmium sulphate and selenium oxide. To the author’s knowledge this is the first report on pulse plated CdxZn1−xSe films. The deposition potential was −0.9 V (SCE). The as deposited films exhibited cubic structure. Composition of the films was estimated by Energy Dispersive Analysis of X-ray studies. X-ray photoelectron spectroscopy studies indicated the binding energies corresponding to Zn(2p3/2), Cd(3d5/2 and 3d3/2) and Se(3d5/2 and 3d3/2). Optical band gap of the films varied from 1.72 to 2.70 eV as the composition varied from CdSe to ZnSe side. Atomic force microscopy studies indicated grain size in the range of 20–150 nm.  相似文献   

4.
A theoretical study on the structure and adsorption mechanism of hydrazine (N2H4) on Ni(1 0 0) are presented. The hydrazine molecule was found to adsorb on the surface through one of its nitrogen atom in its anti-conformation. The charge transfer from hydrazine lone pair orbitals played a key role in the formation of the bonding. The mechanism involved in the bonding was found to reduce the necessity of hyper-conjugation interaction, that reduces the gauche effect found in hydrazine at the gas-phase. Upon adsorption to the surface, the reduced interaction resulted in the promotion of a more favored conformation through its anti-conformation.  相似文献   

5.
InAsSb-based nBn photodetectors were fabricated on GaAs, using the interfacial misfit (IMF) array growth mode, and on native GaSb. At −0.1 V operating bias, 200 K dark current densities of 1.4 × 10−5 A cm2 (on GaAs) and 4.8 × 10−6 A cm−2 (on GaSb) were measured. At the same temperature, specific detectivity (D*) figures of 1.2 × 1010 Jones (on GaAs) and 7.2 × 1010 Jones (on GaSb) were calculated. Arrhenius plots of the dark current densities yielded activation energies of 0.37 eV (on GaAs) and 0.42 eV (on GaSb). These values are close to the 4 K bandgap of the absorption layers (0.32–0.35 eV) indicating diffusion limited dark currents and small valence band offsets. Significantly, these devices could be used for mid-infrared focal plane arrays operating within the temperature range of cost-effective thermoelectric coolers.  相似文献   

6.
The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.  相似文献   

7.
CO adsorption on the Ge(100) surface has been investigated using a slab model with density functional theory implemented in SIESTA. CO was found to be exclusively adsorbed on the asymmetric dimer with C attaching on the lower Ge dimer atom. The adsorption process is barrierless. The calculated adsorption energy and vibration frequencies are comparable to previous experimental results. The crystal orbital Hamilton analysis showed that the bonding between Ge and CO is mainly attributable to the Ge 4pz orbital overlapping with C 2 s, or with CO molecular orbitals 3σ and 4σ. The repulsive energy between adsorbed CO molecules is less than 1 kcal/mol. The diffusion barrier of CO on the Ge(100) surface is about 14 kcal/mol.  相似文献   

8.
We have measured the magnetic susceptibility, resistivity, magnetoresistivity and Hall effect of nonstoichiometric cuprous selenide between 5 and 350 K. Our results show that below 170 K Cu2−xSe is a mixture of diamagnetic Cu1.995Se and paramagnetic Cu3Se2. The phase diagram of the Cu–Se system, in which 170 K represents the eutectic isotherm, governs the relative content of the two phases. For the Cu3Se2 phase a transition to an antiferromagnetic state is observed at about 50 K, with the corresponding Weiss temperature Θ=120 K. On heating above 170 K Cu2−xSe becomes completely diamagnetic, but the transformation is slow and strongly time dependent. The complicated magnetic behaviour is ascribed to a broad temperature hysteresis of the process.  相似文献   

9.
A ternary orthophosphate BaTi(PO4)2 has been prepared using a high temperature molten salt method and structurally determined by single crystal X-Ray diffraction analysis. It crystallizes in yavapaiite-type structure with monoclinic space group C2/m. The structure was refined by a non-merohedral twinning model with the twin law (−0.435 1.4350 −0.564 −0.435 0 0.097 −0.099 1). Band structure calculation using the density functional theory (DFT) method indicates that BaTi(PO4)2 has a direct bond gap of about 3.00 eV, which is well fitted with the experimental value of 2.95 eV. The photoluminescence excitation and emission spectra, decay curve, and the color coordinates for BaTi(PO4)2 were investigated. It can be efficiently excited by UV light (270 nm) and presents blue–green emission (centered at 506 nm), which may be attributed to the lattice defect emission.  相似文献   

10.
The electronic structure and optical properties of Mo, S vacancy and V doping in MoS2 monolayer will be investigated through first-principles calculations based on the density functional theory. The results indicate that the MoS2 with Mo, S vacancy and V doping (Mo14VS32, Mo15VS31 and Mo14VS31) will gain the property of magnetic semiconductor with the magnetic moment of 1 μB, 1 μB and 0.95 μB, respectively. The optical properties of these V-doped and vacancy defect structures all reflect the phenomenon of red shift. The absorption edge of pure monolayer molybdenum disulfide is 0.8 eV, whereas the absorption edges of Mo14VS32, Mo15VS31 and Mo14VS31 become 0 eV, 0.2 eV and 0.16 eV, respectively. As a potential material, MoS2 is widely used in many fields such as the production of optoelectronic devices, military devices and civil devices.  相似文献   

11.
We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from −10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at −2% strain, and the magnetic moment jumps into 1.623 μB at −4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at −7% strain. The Co-doped WSe2 can endure strain from −6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.  相似文献   

12.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

13.
A number of Ge17Ga4Sb10S69−xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge–Ga–Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.  相似文献   

14.
15.
《Solid State Ionics》2006,177(7-8):669-676
The electrical conductivity of sintered samples of Ce1−xNdxO2−x / 2 (0.01  x  0.2) was investigated in air as a function of temperature between 150 and 600 °C using AC impedance spectroscopy. The individual contribution of the bulk and grain boundary conductivities has been discussed in detail. In the low temperature range (< 350 °C), the activation enthalpy for bulk conductivity exhibited a shallow minimum at 3 mol% Nd, with a value of 0.68 eV. The activation enthalpy also produced a shallow minimum at 5 mol% Nd in the high temperature range (> 350 °C), with a value of 0.56 eV. It was shown that Ce1−xNdxO2−x / 2 is an electrolyte that obeys the Meyer Neldel rule. The bulk conductivity data measured by others for the same system has also been recalculated and re-evaluated to facilitate easier comparison with our own data.  相似文献   

16.
The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190–400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 1013/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C4H4S has been determined. At thermal impact energies (Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0(Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0(Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters.  相似文献   

17.
Composition Bi4V2−xSrxO11−δ (0.05≤x≤0.20) is synthesized by melt quench technique followed by heat treatment at 800 °C for 12 h. These compounds are characterised by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, impedance spectroscopy and scanning electron microscopy. X-ray diffraction patterns of all the samples show γ-phase stabilization at room temperature except x=0.05 heat treated sample. The optical band gap of all the samples is observed in semiconducting range. The lowest and the highest optical band gap is 2.39 eV and 2.57 eV for x=0.10 heat treated and x=0.20 quenched samples, respectively. The highest value of dielectric constant is obtained ~107 with very low dielectric loss for x=0.15 and 0.20 samples at ~350 °C and below 10 Hz. The grain size increases with dopant concentration leads to increase the dielectric constant.  相似文献   

18.
Photoelectron spectroscopy of isolated atoms and molecules using single-order high-harmonics of Ti:Sapphire laser pulses (800 nm, 12 fs/30 fs) is demonstrated. Dielectric multilayer mirrors, SiC/Mg and Mo/Si, are used to isolate the 27th (42 eV) and 59th (91 eV) order harmonics, respectively. The obtained harmonics are characterized by valence and inner-shell photoelectron spectroscopy of Xe. The applications to two-color two-photon ionization of He and pump-probe spectroscopy of ultrafast photodissociation of Br2, Br2(C1Πu)  Br(2P3/2) + Br(2P3/2), are presented.  相似文献   

19.
As a candidate for hydrogen storage medium, geometric stability and hydrogen capacity of Ca-decorated graphene with topological defects are investigated using the first-principle based on density functional theory (DFT), specifically for the experimentally realizable single carbon vacancy (SV), 585 double carbon vacancy (585 DCV) and 555–777 double carbon vacancy (555–777 DCV) defects. It is found that Ca atom can be stabilized on above defective graphenes since Ca׳s binding energy on vacancy defect is much larger than its cohesive energy. Up to six H2 molecules can stably bind to a Ca atom on defective graphene with the average adsorption energies of 0.17–0.39 eV/H2. The hybridization of the Ca-3d orbitals with H2-σorbitals and the electrostatic interaction between the Ca cation and the induced H2 dipole both contribute to the H2 molecules binding. Double-side Ca-decorated graphene with 585 DCV and 555–777 DCV defects can theoretically reach a gravimetric capacity of 5.2 wt% hydrogen, indicating that Ca-decorated defective graphene can be used as a promising material for high density hydrogen storage.  相似文献   

20.
The magnetic properties and structures of CoPt15 nm/Ag0−100 nm films deposited by DC magnetron sputtering on glass substrates have been studied. The (0 0 1) texturing was improved by introducing an Ag underlayer. As the Ag underlayer thickness was 100 nm, a nearly perfect (0 0 1)-textured CoPt film was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号