首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct methanol fuel cell (DMFC) consisting of a double-catalytic layered membrane electrode assembly (MEA) provide higher performance than that with the traditional MEA. This novel structured MEA includes a hydrophilic inner catalyst layer and a traditional electrode with an outer catalyst layer, which was made using both catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods. The inner catalyst was PtRu black on anode and Pt black on cathode. The outer catalyst was carbon supported Pt–Ru/Pt on anode and cathode, respectively. Thus in the double-catalytic layered electrodes three gradients were formed: catalyst concentration gradient, hydrophilicity gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting and low methanol crossover. The peak density of DMFC with such MEA was 19 mW cm−2, operated at 2 M CH3OH, 2 atm oxygen at room temperature, which was much higher than DMFC with traditional MEA.  相似文献   

2.
We present a proton exchange membrane fuel cell (PEMFC) manufacturing route, in which a thin layer of polymer electrolyte solution is spray-coated on top of gas diffusion electrodes (GDEs) to work as a proton exchange membrane. Without the need for a pre-made membrane foil, this allows inexpensive, fast, large-scale fabrication of membrane-electrode assemblies (MEAs), with a spray-coater comprising the sole manufacturing device. In this work, a catalyst layer and a membrane layer are consecutively sprayed onto a fibrous gas diffusion layer with applied microporous layer as substrate. A fuel cell is then assembled by stacking anode and cathode half-cells with the membrane layers facing each other. The resultant fuel cell with a low catalyst loading of 0.1 mg Pt/cm2 on each anode and cathode side is tested with pure H2 and O2 supply at 80 °C cell temperature and 92% relative humidity at atmospheric pressure. The obtained peak power density is 1.29 W/cm2 at a current density of 3.25 A/cm2. By comparison, a lower peak power density of 0.93 W/cm2 at 2.2 A/cm2 is found for a Nafion NR211 catalyst coated membrane (CCM) reference, although equally thick membrane layers (approx. 25 μm), and identical catalyst layers and gas diffusion media were used. The superior performance of the fuel cell with spray-coated membrane can be explained by a decreased low frequency (mass transport) resistance, especially at high current densities, as determined by electrochemical impedance spectroscopy.  相似文献   

3.
Novel γ-Al2O3 supported nickel (Ni/Al2O3) catalyst was developed as a functional layer for Ni–ScSZ cermet anode operating on methane fuel. Catalytic tests demonstrated Ni/Al2O3 had high and comparable activity to Ru–CeO2 and much higher activity than the Ni–ScSZ cermet anode for partial oxidation, steam and CO2 reforming of methane to syngas between 750 and 850 °C. By adopting Ni/Al2O3 as a catalyst layer, the fuel cell demonstrated a peak power density of 382 mW cm?2 at 850 °C, more than two times that without the catalyst layer. The Ni/Al2O3 also functioned as a diffusion barrier layer to reduce the methane concentration within the anode; consequently, the operation stability was also greatly improved without coke deposition.  相似文献   

4.
In this paper a single electrode supported direct methanol fuel cell (DMFC) is fabricated and tested. The novel architecture combines the elimination of the polymer electrolyte membrane (PEM) and the integration of the anode and cathode into one component. The thin film fabrication involves a sequential deposition of an anode catalyst layer, a cellulose acetate electronic insulating layer and a cathode catalyst layer onto a single carbon fibre paper substrate. The single electrode supported DMFC has a total thickness of 3.88 × 10?2 cm and showed a 104% improvement in volumetric specific power density over a two electrode DMFC configuration under passive conditions at ambient temperature and pressure (1 atm, 25 °C).  相似文献   

5.
Experiments aimed at ameliorating carbon dioxide (CO2) into methanol were explored using pyridoxine, a member of the vitamin B6 family, to enhance the reduction process. At a platinum electrode, an aqueous solution (pH  5) of pyridoxine showed a quasi-reversible redox couple with the cathodic peak detected at ca. − 0.55 V vs. Ag/AgCl (3 M KCl) in the presence of CO2 and argon. An increase in the corresponding cathodic peak current was observed following saturation of the solution with CO2 using a Pt electrode, but with no detectable reduction current recorded at a glassy carbon electrode for the same system. Confirmation of methanol formation during the pyridoxine-assisted CO2 reduction was conducted by using gas chromatography analysis of the electrolyzed solutions and faradic yields of ca. 5% were afforded. A combination of the results from the cyclic voltammetry and constant current chronopotentiometry experiments revealed an overpotential of ≤ 200 mV was required. The results indicate a potential utility of pyridoxine as an alternative reagent to the more toxic pyridine during the electrochemical reduction of CO2.  相似文献   

6.
A VO2 · 0.43H2O powder with a flaky particle morphology was synthesized via a hydrothermal reduction method. It was characterized by scanning electron microscopy, electron energy loss spectroscopy, and thermogravimetric analysis. As an electrode material for rechargeable lithium batteries, it was used both as a cathode versus lithium anode and as an anode versus LiCoO2, LiFePO4 or LiNi0.5Mn1.5O4 cathode. The VO2 · 0.43H2O electrode exhibits an extraordinary superiority with high capacity (160 mAh g?1), high energy efficiency (95%), excellent cyclability (142.5 mAh g?1 after 500 cycles) and rate capability (100 mAh g?1 at 10 C-rate).  相似文献   

7.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

8.
The electrosynthesis of N-acetyl-l-cysteine (NAC) from the electroreduction of N,N-diacetyl-l-cystine (NNDAC) using a Polymer Electrolyte Membrane Electrochemical Reactor (PEMER) has been carried out. The Membrane Electrode Assembly (MEA) was formed by a cathode with a catalyst layer made of Pb/C 20 wt% supported on Toray Paper and a catalyst loading of 0.5 mg Pb cm?2. The anode was a 2 mg Pt cm?2 gas diffusion anode fed with H2. The main advantages of this process are: (1) the electrochemical reactor allows to carry out the electrosynthesis without supporting electrolyte, improving in this way the NAC purification and (2) a pronounced decrease of the electrosynthesis energy consumption due to both, the small internal resistance of the PEMER (electrode gap very small and electrolyte very conductive) and the choice of the H2 oxidation as anodic reaction in stead of the oxygen evolution reaction from water oxidation. The large number of pharmaceutical applications of NAC, as well as the high versatility of the PEMER for electrosynthesis processes, makes interesting the use of MEAs for electroorganic synthesis.  相似文献   

9.
In this study, the electrochemical reduction of CO2 was examined using a Ag-modified Cu catalyst cathode in a series of mixed ionic liquids (ILs) in the presence or absence of cobalt chloride (CoCl2). These results indicate that the Ag-modified Cu electrode in EMIMBF4 + BMIMNO3 with CoCl2 exhibited the excellent synergy for the electrochemical reduction of CO2 to CO with a stable area specific activity, with continuous production for at least 150 h. In such a system, a CO selectivity of 98% was achieved. According to the obtained results, a possible mechanism was proposed. The synergistic effect between the Ag-modified Cu electrode, serving as the main catalyst, and CoCl2 and ILs, serving as the co-catalysts, is probably responsible for the highly selective and stable electrocatalytic reduction of CO2 to CO.  相似文献   

10.
《Comptes Rendus Chimie》2014,17(5):454-458
The steam reforming of methane over Cu/Co6Al2 mixed oxides with different copper contents was studied. The Co6Al2 support was prepared via the hydrotalcite route. It was thermally stabilized at 500 °C, impregnated with 5 wt.%, 15 wt.% or 25 wt.% copper using copper (II) nitrate Cu(NO3)2·3H2O precursor and then calcined again at 500 °C under an air flow. The impregnation of copper enhanced significantly the reactivity of the solids in the considered reaction. The 5Cu/Co6Al2 solid was the most reactive one, with a methane conversion of 96% at 650 °C. The selectivities of H2 and CO2 were also better for the catalyst containing 5 wt.% copper compared to higher copper loadings. The decrease in the catalytic reactivity with increasing the copper content was attributed to the formation of agglomerated and less reactive CuO species, which were detected by XRD and TPR analyses.  相似文献   

11.
The corrosion-resistance of a carbon nanocage used as a catalyst support in a polymer electrolyte membrane fuel cell was investigated by measuring CO2 generation using on-line mass spectrometry at a constant potential of 1.4 V for 30 min. Polarization curves of membrane electrode assemblies containing Pt/carbon nanocage were obtained and used to evaluate performance degradation. The carbon nanocage was found to possess significant resistance to electrochemical corrosion, exhibiting low performance degradation of only about 2.3% after the corrosion test. This high corrosion resistance is attributed both to the strong hydrophobic nature of the surface and the graphitic structure of the carbon nanocage.  相似文献   

12.
The electrochemical reduction of CO2 is strongly influenced by both the applied potential and the surface adsorption status of the catalyst. In this work a gas diffusion electrode (GDE) coated with Pd nanoparticles/carbon black (Pd/XC72) was used to study the electrochemical reduction of CO2. Cyclic voltammetric (CV) analysis of Pd/XC72 between 1.5 V and − 0.6 V (vs. RHE) shows the formation of intermediates and the blocking of hydrogen absorption on the Pd nanoparticles (NPs) under a CO2 atmosphere. The relationships between the Faradaic efficiency/current density and the applied potential reveal that the onset potential of CO formation is around − 0.4 V. Moreover, the presence of adsorbed CO was confirmed through CV analysis of Pd/XC72 under CO2 and CO/He atmospheres. This demonstrates that H atoms and CO intermediates co-adsorb on the surface of the Pd NPs at an applied potential of around − 0.4 V. When the applied potential is more negative than − 0.6 V, adsorption of CO intermediates on the surface of the Pd NPs becomes dominant.  相似文献   

13.
High electrochemical reversibility of the TiS2 anode in “Water-in-Salt” electrolyte (21 m LiTFSI in H2O) is demonstrated for the first time. The wide electrochemical window and low chemical activity of H2O in the “Water-in-Salt” electrolyte not only significantly enhanced the electrochemical reversibility of TiS2 but also effectively suppressed the hydrolysis side reaction in the aqueous electrolyte. Paired with a LiMn2O4 cathode, the LiMn2O4/TiS2 full cell delivers a relatively high discharge voltage of 1.7 V and an energy density of 78 Wh kg 1 as well as a satisfactory rate performance.  相似文献   

14.
Electrocatalytic CO2 reduction reaction (CO2RR) in membrane electrode assembly (MEA) systems is a promising technology. Gaseous CO2 can be directly transported to the cathode catalyst layer, leading to enhanced reaction rate. Meanwhile, there is no liquid electrolyte between the cathode and the anode, which can help to improve the energy efficiency of the whole system. The remarkable progress achieved recently points out the way to realize industrially relevant performance. In this review, we focus on the principles in MEA for CO2RR, focusing on gas diffusion electrodes and ion exchange membranes. Furthermore, anode processes beyond the oxidation of water are considered. Besides, the voltage distribution is scrutinized to identify the specific losses related to the individual components. We also summarize the progress on the generation of different reduced products together with the corresponding catalysts. Finally, the challenges and opportunities are highlighted for future research.  相似文献   

15.
Solid oxide fuel cell (SOFC) unit was constructed with Ni–GDC (gadolinia-doped ceria) as the anode, YSZ as the electrolyte, and Cu-added La0.58Sr0.4Co0.2Fe0.8O3–δ–GDC as the cathode. Electrochemical CO2 reduction occurs. The CO formation rate, the CO2 conversion and the generated current density increase with increasing CO2 concentration and temperature. The CO2 conversion rate equals exactly the CO formation rate. No carbon deposition occurs. The activation energy is 2.72 kcal mol?1. The electrochemical CO2 reduction (dissociation) can have much lower activation barrier than the catalytic one. Simultaneous CO2 reduction with power generation in SOFCs can be feasible.  相似文献   

16.
Preliminary proliferation assays in human tumor cervix line HeLa, using the coordination compound [Cu(pdto)H2O]2+ (pdto = 1,8-bis-(2-pyridyl)-3,6-dithiaoctane) and its precursors Cu(NO3)2 · 2.5H2O and pdto, were carried out. The results showed that the copper complex has a behavior similar to that of the reference drug cis-platin. No biological activity for the non-coordinated ligand and the copper salt was found. It was established by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy, that the complex [Cu(pdto)H2O]2+ presents an electrochemical reversible Cu(II)/Cu(I) reduction, in acetonitrile solution, meanwhile, the copper salt Cu(NO3)2 · 2.5H2O exhibited an electrochemical irreversible behavior. A comparison between biological and electrochemical results corresponding to [Cu(pdto)H2O]2+ and Cu(NO3)2 · 2.5H2O let us to proposed, the electrochemical reversibility, as one important factor in the antitumoral activity of the copper complex. Due to the nature of the studies presented in this work, other factors like intercalation properties with DNA cannot be neglected in the antitumoral activity of the complex.  相似文献   

17.
The kinetic of the direct CO_2 hydrogenation to higher hydrocarbons via Fischer–Tropsch synthesis(FTS)and reverse water-gas shift reaction(RWGS) mechanisms over a series of precipitated Fe/Cu/K catalysts with various particle sizes was studied in a well mixed, continuous spinning basket reactor. The iron catalysts promoted with copper and potassium were prepared via precipitation technique in various alcohol/water mixtures to achieve a series of catalyst particle sizes between 38 and 14 nm. A new kinetic model for direct CO_2 hydrogenation was developed with combination of kinetic model for FTS reaction and RWGS equilibrium condition. For estimate of structure sensitivity of indirect CO_2 hydrogenation to higher hydrocarbons, the kinetic parameters of developed model are evaluated for a series of iron catalysts with various particle sizes. For kinetic study a wide range of syngas conversions have been obtained by varying experimental conditions. The results show that the new developed model fits favorably with experimental data. The values of activation energies for indirect CO_2 hydrogenation reaction are fall within the narrow range of 23–16 kJ/mol.  相似文献   

18.
A carbon-supported Ru85Se15 chalcogenide catalyst was synthesized via a microwave-assisted polyol process using RuCl3 and Na2SeO3 as the Ru and Se precursors. The Ru85Se15 chalcogenide catalyst was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively-coupled plasma-atomic emission spectroscopy (ICP-AES). The XRD pattern for Ru85Se15/C clearly exhibited the characteristic reflections of metallic ruthenium. The TEM image indicated that the Ru85Se15 chalcogenide catalyst was well dispersed on the surface of the carbon support with a narrow particle size distribution. Rotating disk electrode (RDE) and single-cell measurements were carried out to evaluate the electrocatalytic activity of the Ru85Se15 chalcogenide catalyst. The oxygen reduction reaction (ORR) activity of the Ru85Se15/C catalyst was compared with the commercial Pt/C catalyst with the absence/presence of methanol. In the absence of methanol, the Ru85Se15/C catalyst showed a comparable ORR activity with the Pt/C catalyst. However, in the presence of methanol, the Ru85Se15/C catalyst showed a better ORR activity than the Pt/C catalyst. The performance of the membrane electrode assembly (MEA) prepared with Ru85Se15/C as the cathode catalyst in a single proton exchange membrane fuel cell (PEMFC) showed the maximum power density of 400 mW cm−2 at the current density of 1300 mA cm−2.  相似文献   

19.
A cost-effective cell fabrication process was developed for intermediate temperature solid oxide fuel cells (IT-SOFCs). Co-doped ceria Ce0.8Gd0.05Y0.15O1.9 (GYDC) was synthesized by carbonate co-precipitation method. Lithiated NiO was prepared by glycine-nitrate combustion method and adopted as cathode material for IT-SOFCs. Single cell was fabricated by one-step dry-pressing and co-firing anode, anode functional layer (AFL), electrolyte and cathode together at 1200 °C for 4 h. The cell presented decent performance and an overall electrode polarization resistance of 0.54 Ω cm2 has been achieved at 600 °C. These results demonstrate the possibility of using lithiated NiO as cathode material for ceria-based IT-SOFCs and the development of affordable fuel cell devices is encouraged.  相似文献   

20.
The effort on electrochemical reduction of CO_2 to useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical reduction of CO_2 in solid oxide electrolysis cells(SOECs). At high temperature, only CO is produced with high current densities and Faradic efficiency while the reactor is complicated and a better sealing technique is urgently needed. The typical electrolytes such as zirconia-based oxides, ceria-based oxides and lanthanum gallates-based oxides, anodes and cathodes are introduced in this review, and the cathode materials, such as conventional metal–ceramics(cermets), mixed ionic and electronic conductors(MIECs) are discussed in detail. In the future, to gain more value-added products, the electrolyte, cathode and anode materials should be developed to allow SOECs to be operated at temperature range of 573–873 K. At those temperatures, SOECs may combine the advantages of the low temperature system and the high temperature system to produce various products with high current densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号