首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The alloys Co2B were prepared by two ways of high temperature solid phase process and arc melting, the structure of the alloys was characterized by XRD and SEM. It showed that it was structure of tetragonal Co2B.The electrochemical experimental results demonstrated that the Co2B prepared by two means both showed excellent cycling stability. The initial discharge capacity of Co2B prepared by the high temperature solid phase process was 480.3 mA h g−1, there was no distinct declination after 70 charge–discharge cycles and the capacity kept about 195 mA h g−1. Co2B prepared by the high temperature solid phase process showed very good electrochemical reversibility in CV curves. The hydrogen storage mechanism was also discussed, it confirmed that the high initial capacity of Co2B prepared by the high temperature solid phase process was due to the oxidation of Co and B2O3, and it was irreversible.  相似文献   

2.
Nano-sized nickel ferrite (NiFe2O4) was prepared by hydrothermal method at low temperature. The crystalline phase, morphology and specific surface area (BET) of the resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and nitrogen physical adsorption, respectively. The particle sizes of the resulting NiFe2O4 samples were in the range of 5–15 nm. The electrochemical performance of NiFe2O4 nanoparticles as the anodic material in lithium ion batteries was tested. It was found that the first discharge capacity of the anode made from NiFe2O4 nanoparticles could reach a very high value of 1314 mAh g−1, while the discharge capacity decreased to 790.8 mAh g−1 and 709.0 mAh g−1 at a current density of 0.2 mA cm−2 after 2 and 3 cycles, respectively. The BET surface area is up to 111.4 m2 g−1. The reaction mechanism between lithium and nickel ferrite was also discussed based on the results of cycle voltammetry (CV) experiments.  相似文献   

3.
The sodium lithium titanate with composition Na2Li2Ti6O14 has been synthesized by a sol–gel method. Thermogravimetric analysis and differential thermal analysis (TG–DTA) of the thermal decomposition process of the precursor and X-ray diffraction (XRD) data indicate the crystallization of sodium lithium titanate has occurred at about 600 °C. Electrochemical lithium insertion into Na2Li2Ti6O14 for lithium ion battery has been investigated for the first time. These results indicate the discharge and charge potential plateaus are about 1.3 V. The initial discharge capacity is much higher than the charge capacity and irreversible capacity exists in the voltage window 1–3 V. Subsequently, the discharge capacity decreases slowly, but the charge capacity increases slightly in the following cycles. After a few cycles, the specific capacity remains almost constant values and the sample exhibits the excellent retention of capacity on cycling.  相似文献   

4.
Vertical arrays of one-dimensional tin nanowires on silicon dioxide (SiO2)/silicon (Si) substrates have been developed as anode materials for lithium rechargeable microbatteries. The process is complementary metal-oxide-semiconductor (CMOS) compatible for fabricating on-chip microbatteries. Nanoporous anodized aluminum oxide (AAO) templates integrated on SiO2/Si substrates were employed for fabrication of tin nanowires resulting in high surface area of anodes. The microstructure of these nanowire arrays was investigated by scanning electron microscopy and X-ray diffraction. The electrochemical tests showed that the discharge capacity of about 400 mA h g−1 could be maintained after 15 cycles at the high discharge/charge rate of 4200 mA g−1.  相似文献   

5.
Porous SnO2 nanotubes were prepared via electrospinning followed by calcination in air. As anode materials for lithium ion batteries, the porous nanotubes delivered a high discharge capacity of 807 mAh g? 1 after 50 cycles. Even after cycled at high rates, the electrode still retained a high fraction of its theoretical capacity. Such excellent performances of porous SnO2 nanotubes could be attributed to the porous and hollow structure which facilitated liquid electrolyte diffusion into the bulk materials and buffered large volume changes during lithium ions insertion/extraction. Furthermore, the nanoparticles of nanotubes provided the shorter diffusion length for lithium ions insertion which benefited in retaining the structural stability and good rate performance. Our results demonstrated that this simple method could be extended for the synthesis of porous metal oxide nanotubes with high performances in the applications of lithium ion batteries and other fields.  相似文献   

6.
Hexagonal Li2MgSnO4 compound was synthesized at 800 °C using Urea Assisted Combustion (UAC) method and the same has been exploited as an anode material for lithium battery applications. Structural investigations through X-ray diffraction, Fourier Transform Infra Red spectroscopy and 7Li NMR (Nuclear Magnetic Resonance spectroscopy) studies demonstrated the existence of hexagonal crystallite structure with a = 6.10 and c = 9.75. An average crystallite size of ∼400 nm has been calculated from PXRD pattern, which was further evidenced by SEM images. An initial discharge capacity of ∼794 mA h/g has been delivered by Li2MgSnO4 anode with an excellent capacity retention (85%) and an enhanced coulombic efficiency (97–99%). Further, the Li2MgSnO4 anode material has exhibited a steady state reversible capacity of ∼590 mA h/g even after 30 cycles, thus qualifying the same for use in futuristic lithium battery applications.  相似文献   

7.
LiFe1/3Mn1/3Co1/3PO4/C solid solution was prepared via a poly(ethylene glycol) assisted sol–gel method and exploited as cathode materials for lithium ion batteries. X-ray diffraction patterns indicate that LiFe1/3Mn1/3Co1/3PO4/C is crystallized in an orthorhombic structure. The scanning electron microscopy and transmission electron microscopy show that the particles are about 200 nm with a uniform carbon coating of about 8 nm in thickness to form a core–shell nanostructure. During charge–discharge cycles, LiFe1/3Mn1/3Co1/3PO4/C presented three plateaus corresponding to Fe3+/Fe2+, Mn3+/Mn2+ and Co3+/Co2+ redox couples, and a discharge capacity of 150.8 mAh g?1 in the first cycle, remaining 121.2 mAh g?1 after 30 cycles. Core–shell structure can optimize the performances of polyoxoanionic materials for lithium ion batteries.  相似文献   

8.
InP thin film has been successfully fabricated by pulsed laser deposition (PLD) and was investigated for its electrochemistry with lithium for the first time. InP thin film presented a large reversible discharge capacity around 620 mAh g?1. The reversibility of the crystalline structure and electrochemical reaction of InP with lithium were revealed by using ex situ XRD and XPS measurements. The high reversible capacity and stable cycle of InP thin film electrode with low overpotential made it one of the promise energy storage materials for future rechargeable lithium batteries.  相似文献   

9.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

10.
Mesoporous Ge was prepared by mechanochemical reaction of GeO2 and Mg powders followed by an etching process with HCl solution. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and charge–discharge measurement. With a pore-distribution concentrated around 10 nm, the product presents a BET surface area of 49.98 m2/g. When using as an anode material for lithium ion battery, the mesoporous Ge exhibits a reversible capacity of 950 mA h/g and retains a capacity of 789 mA h/g after 20 cycles at a current density of 150 mA/g. The cycleability is significantly improved compared with non-porous Ge.  相似文献   

11.
A hierarchical micro/nanostructured Li-rich layered 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 (H-LMNCO) material is prepared for the first time through the development of a solvothermal method, and served as cathode of lithium ion batteries. Electrochemical tests indicate that the H-LMNCO exhibits both a high reversible capacity and an excellent rate capability. The reversible discharge capacity of the H-LMNCO has been measured as high as 300.1 mAh·g 1 at 0.2 C rate. When the rate is increased to 10 C, the discharge capacity could still maintain a high value of 163.3 mAh·g 1. The results demonstrate that the developed solvothermal route is a novel synthesis strategy of preparing high rate performance Li-rich layered cathode material for lithium ion batteries.  相似文献   

12.
In this study, Nb2O5 nanobelts, with a ca. ∼15 nm in thickness, ca. ∼60 nm in width and several tens of mircrometers in length, have first been used as the electrode material for lithium intercalation over the potential window of 3.0–1.2 V (vs. Li+/Li). It delivers an initial intercalation capacity of 250 mA hg−1 at 0.1 Ag−1 current density, corresponding to x = 2.5 for LxNb2O5, and can still keep relative stable and reaches as large as 180 mA hg−1 after 50 cycles. Surprisingly, the electrodes composed of Nb2O5 nanobelts can work smoothly even at high current density of 10 Ag−1, and shows higher specific capacity and excellent cycling stable, as well as sloped feature in voltage profile. Cycling test indicates Nb2O5 nanobelts electrode shows a high reversible charge/discharge capacity, high rate capability with excellent cycling stability.  相似文献   

13.
A VO2 · 0.43H2O powder with a flaky particle morphology was synthesized via a hydrothermal reduction method. It was characterized by scanning electron microscopy, electron energy loss spectroscopy, and thermogravimetric analysis. As an electrode material for rechargeable lithium batteries, it was used both as a cathode versus lithium anode and as an anode versus LiCoO2, LiFePO4 or LiNi0.5Mn1.5O4 cathode. The VO2 · 0.43H2O electrode exhibits an extraordinary superiority with high capacity (160 mAh g?1), high energy efficiency (95%), excellent cyclability (142.5 mAh g?1 after 500 cycles) and rate capability (100 mAh g?1 at 10 C-rate).  相似文献   

14.
An interwoven core–shell structured Ni/NiO anode for lithium ion batteries was created by a simple oxidation of Ni foam. As-prepared configuration has a high specific discharge capacity of 701 mAh g?1 at the 2nd cycle. Its electrochemical performance at subsequent cycles shows good energy capacity of 646 mAh g?1 at the 65th cycle as well as good rate capability. The porous core–shell structure not only buffers the volume change during cycling but also effectively increases the contact among anode, current collector and electrolyte. The small contact resistance between NiO and Ni facilitates enhanced intrinsic kinetics from conversion reaction.  相似文献   

15.
We report the electrochemical performance of carbon-coated TiO2 nanobarbed fibers (TiO2@C NBFs) as anode material for lithium-ion batteries. The TiO2@C NBFs are composed of TiO2 nanorods grown on TiO2 nanofibers as a core, coated with a carbon shell. These nanostructures form a conductive network showing high capacity and C-rate performance due to fast lithium-ion diffusion and effective electron transfer. The TiO2@C NBFs show a specific reversible capacity of approximately 170 mAh g 1 after 200 cycles at a 0.5 A g 1 current density, and exhibit a discharge rate capability of 4 A g 1 while retaining a capacity of about 70 mAh g 1. The uniformly coated amorphous carbon layer plays an important role to improve the electrical conductivity during the lithiation–delithiation process.  相似文献   

16.
Li0.93[Li0.21Co0.28Mn 0.51]O2 nanoparticles with an R-3m space group is hydrothermally prepared from Co0.35Mn0.65O2 obtained from an ion-exchange reaction with K-birnessite K0.32MnO2 at 200 °C. Even at a hydrothermal reaction temperature of 150 °C, the spinel (Fd3m) phase is dominant, and a layered phase became dominant by combining an increase in the temperature to 200 °C with an increase in lithium concentration. The as-prepared cathode particle has plate-like hexagonal morphology with a size of 100 nm and thickness of 20 nm. The first discharge capacity of the cathode is 258 mAh/g with an irreversible capacity ratio of 22%, and the capacity retention after 30 cycles is 95% without developing a plateau at ∼3 V. Capacity retention of the cathode discharge is 84% at 4C rate (=1000 mA/g) and shows full capacity recovery when decreasing the C rate to 0.1 C.  相似文献   

17.
We obtained pure nanosized α-LiFeO2 by a simple and quick method involving the reaction between goethite, lithium hydroxide and lithium nitrate at temperatures as low as 523 K. Unlike the known limited electrochemical activity of this polymorph, cells based on our nanosized electrode provided a remarkable high capacity in the first cycles and showed a good cycling life, due to its nanosized character and adequate morphology to enhance lithium insertion/deinsertion. Capacity values when cycling in the 1.5–4.5 V range are up to 150 mAh g−1 in the 50th cycle. To our knowledge, the capacity values and its retention upon cycling are the best reported for this polymorph in an un-doped state.  相似文献   

18.
Nanocrystalline MnO thin film has been prepared by a pulsed laser deposition (PLD) method. The reversible lithium storage capacity of the MnO thin film electrodes at 0.125C is over 472 mAh g?1 (3484 mAh cm?3) and can be retained more than 90% after 25 cycles. At a rate of 6C, 55% value of the capacity at 0.125C rate can be obtained for both charge and discharge. As-prepared MnO thin film electrodes show the lowest values of overpotential for both charge and discharge among transition metal oxides. All these performances make MnO a promising high capacity anode material for Li-ion batteries.  相似文献   

19.
PbO2 thin films were prepared by pulse current technique on Ti substrate from Pb(NO3)2 plating solution. The hybrid supercapacitor was designed with PbO2 thin film as positive electrode and activated carbon (AC) as negative electrode in the 5.3 M H2SO4 solution. Its electrochemical properties were determined by cyclic voltammetry (CV), charge–discharge test and electrochemical impedance spectroscopy (EIS). The results revealed that the PbO2/AC hybrid supercapacitor exhibited large specific capacitance, high-power and stable cycle performance. In the potential range of 0.8–1.8 V, the hybrid supercapacitor can deliver a specific capacitance of 71.5 F g?1 at a discharge current density of 200 mA g?1(4 mA cm?2) when the mass ratio of AC to PbO2 was three, and after 4500 deep cycles, the specific capacitance remains at 64.4 F g?1, or 32.2 Wh Kg?1 in specific energy, and the capacity only fades 10% from its initial value.  相似文献   

20.
The influence of vinylene carbonate addition to aqueous LiNO3 solution on the Li-ion insertion performance of a Li1.05Cr0.10Mn1.85O4 was studied by galvanostatic charging/discharging. Without additive, the coulombic capacity amounted initially to 80 mA h g?1 and, during 50 galvanostatic charging/discharging cycles, decreased to 44.1% of the initial value. Upon VC addition in an amount of 1 wt.%, the initial discharge capacity of 112 mA h g?1 was registered which after 100th charging/discharging cycles retained even 82% of the initial value. This is the first report of a successful use of an additive to improve the behaviour of a Li-intercalation material in an aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号