共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode 总被引:1,自引:0,他引:1
An ionic liquid modified carbon paste electrode (IL/CPE) had been fabricated by using hydrophilic ionic liquid 1-amyl-3-methylimidazolium bromide ([AMIM]Br) as a modifier. The IL/CPE was characterized by scanning electron microscope and voltammetry. Electrochemical behavior of rutin at the IL/CPE had been investigated in pH 3.29 Britton-Robinson (B-R) buffer solution by cyclic voltammetry (CV) and square wave voltammetry (SWV). The experimental results suggested that the modified electrode exhibited an electrocatalytic activity toward the redox of rutin. The electron transfer coefficient (α) and the standard rate constant (ks) of rutin at the modified electrode were calculated. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 4.0 × 10−8 to 1.0 × 10−5 mol L−1 (r = 0.9998), with a detection limit of 1.0 × 10−8 mol L−1 (S/N = 3). The relative standard deviation (R.S.D.) for six times successful determination of 8.0 × 10−7 mol L−1 rutin was 1.2%. The proposed method was applied to determine rutin in tablet and urine sample. In addition, the IL/CPE exhibited a distinct advantage of simple preparation, surface renewal, good reproducibility and good stability. 相似文献
2.
用疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸([BMIM]PF6)作粘合剂制备了离子液体修饰碳糊电极(IL/CPE)。采用循环伏安法(CV)研究了维生素E(vitamin E,VE)的氧化产物生育酚红在IL/CPE和未修饰碳糊电极(CPE)上的电化学行为,结果表明生育酚红在IL/CPE上氧化过程更易于进行,峰电流响应ip也明显增加,表明IL/CPE对生育酚红的氧化还原反应具有良好的电催化作用。同时测定了电极过程的动力学参数:电荷转移系数α=0.8746,扩散系数D=1.65×10-3cm2/s,电极反应速率常数kf=6.64×10-2cm/s。采用方波伏安法(SWV)发现生育酚红氧化峰电流与其浓度在1.53×10-4mol/L~8.39×10-7mol/L范围内呈线性关系,检出限为1.58×10-8mol/L。该法可用于VE实际样品的分析测定。 相似文献
3.
4.
We report on a new electrode for the determination of adenosine-5??-triphosphate (ATP). It is based on modified carbon paste electrode that contains an ionic liquid (IL) as the binder. The electrode shows strong electrocatalytic oxidative activity towards ATP at pH 4.5 in giving a well-defined single oxidation peak. The oxidation reaction is adsorption-controlled and due to the presence of the highly conductive IL. The electron transfer rate constant was calculated to be 2.04×10?C3 s?C1, and the surface coverage is 1.11×10?C10 mol cm?C2. Under the selected conditions, the oxidation peak current changes linearly with the concentration of ATP in the range from 5.0 to 1000???mol L?1 and a detection limit of 1.67???mol L?1 (3???) as determined by differential pulse voltammetry. The method displays good selectivity and was applied to the determination of ATP injection samples with satisfactory results. Figa
An ionic liquid 1-carboxyl-methyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode was fabricated and used for the sensitive detection adenosine-5??-triphosphate (ATP). The electrochemical oxidation of ATP was greatly enhanced due to the presence of IL in the carbon paste and the electrochemical parameter was calculated. 相似文献
5.
Voltammetric sensor for glutathione determination based on ferrocene-modified carbon paste electrode
Jahan Bakhsh Raoof Reza Ojani Mansureh Kolbadinezhad 《Journal of Solid State Electrochemistry》2009,13(9):1411-1416
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode
(FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques
were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation
of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition
(pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction
was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent
on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode
can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma. 相似文献
6.
The direct electrochemistry of herring sperm double-stranded DNA (dsDNA) on an ionic liquid N-butylpyridinium hexafluorophosphate modified carbon paste electrode was investigated. The cyclic voltammogram showed two irreversible oxidation peaks at 0.868 V and 1.188 V (vs. SCE), which corresponded to the oxidation of guanine and adenine residues, respectively. Compared to the common carbon paste electrode the electrochemical response was greatly improved. The electrochemical behavior of dsDNA on the modified electrode was carefully investigated with the electrochemical parameters were calculated. Under optimal conditions the dsDNA can be directly determined in the concentration range from 50 to 600 μg mL?1 with a detection limit of 17 μg mL?1 (3σ). 相似文献
7.
《Electrochemistry communications》2008,10(2):298-301
Electrochemical oxidation of thermally denatured single-stranded DNA (ssDNA) was studied on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (IL-CPE). A distinct oxidation peak appeared at +0.772 V (vs. SCE) on the IL-CPE after preconcentration of ssDNA at +0.35 V for 160 s in pH 7.0 phosphate buffer solution (PBS), which was attributed to the oxidation of guanine residue on the ssDNA molecular structure. The results showed an apparent negative shift of the oxidation peak potential and a great enhancement of the oxidation peak current on the IL-CPE compared with that of CPE. The electrochemical parameters of ssDNA on the IL-CPE were further calculated. Under the selected conditions, a linear calibration curve for ssDNA detection was obtained in the concentration range from 10.0 to 110.0 μg mL−1 with the detection limit of 1.5 μg mL−1(3σ). 相似文献
8.
Jahan Bakhsh Raoof Reza Ojani Maryam Ramine 《Journal of Solid State Electrochemistry》2009,13(9):1311-1319
A p-duroquinone (tetramethyl-p-benzoquinone) modified carbon paste electrode (DMCPE) was employed to study the electrocatalytic reduction of nitrite in
aqueous solutions using cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry
(DPV). It has found that under an optimum condition (pH 1.00), the reduction of nitrite at the surface of DMCPE occurs at
a potential of about 660 mV less negative than that of an unmodified carbon paste electrode (CPE). The catalytic rate constant,
k′h, based on Andrieux and Saveant theoretical model was calculated as for scan rate 10 mV s-1. Also, the apparent diffusion coefficient, D
app, was found as 2.5 × 10–10 and 3.61 × 10–5 cm2 s-1
for p-duroquinone in carbon paste matrix and nitrite in aqueous buffered solution, respectively. The values for αnα were estimated to be −0.65 and −0.19 for the reduction of nitrite at the surface of DMCPE and CPE, respectively. The electrocatalytic
reduction peak currents showed a linear dependence on the nitrite concentration, and a linear analytical curve was obtained
in the ranges of 5.0 × 10–5 M to 8.0 × 10–3 M and 6.0 × 10–6 M to 8.0 × 10–4 M of nitrite concentration with CV and DPV methods, respectively. The detection limits (2σ) were determined as 2.5 × 10–5 M and 4.3 × 10–6 M by CV and DPV methods. This method was also applied as a simple, selective and precise method for determination of nitrite
in real samples (the weak liquor from the wood and paper factory of Mazandaran province in Iran) by using a standard addition
method. 相似文献
9.
A carbon ionic liquid electrode (CILE) was fabricated by mixing N-butylpyridinium hexafluoro-phosphate (BPPF
6
) with graphite powder and further used for the investigation on the electrochemical behavior of L-tryptophan (Trp). The fabricated CILE showed good conductivity, inherent electrocatalytic ability and strong promotion to the electron transfer
of Trp. On the CILE, an irreversible oxidation peak appeared at 0.948 V (vs. saturated calomel reference electrode). For 5.0
× 10−5 M Trp the oxidation peak current increased about 5 times and the oxidation peak potential decreased on 0.092 V compared to
carbon paste electrode. The results indicated that an electrocatalytic reaction occurred on CILE. The conditions for the electrochemical
detection were optimized and the electrochemical parameters of Trp on CILE were carefully investigated. Under the selected
conditions, the oxidation peak current showed linear relationship with Trp concentration in the range of 8.0 × 10−6 ∼1.0 × 10−3 M for cyclic voltammetry and the detection limit was estimated as 4.8 × 10−6 M (3σ). The interferences of other amino acids or metal ions on the determination were tested and the proposed method was
successfully applied to the synthetic sample analysis. 相似文献
10.
An ionic liquid-type carbon paste electrode (IL-CPE) had been fabricated by replacing non-conductive organic binders with a conductive room temperature ionic liquid, 1-pentyl-3-methylimidazolium hexafluorophosphate (PMIMPF6). The electrochemical responses of calcium dobesilate were investigated at the IL-CPE and the traditional carbon paste electrode (T-CPE) in 0.05 mol L−1 H2SO4, respectively. The results showed the superiority of IL-CPE to T-CPE in terms of provision of higher sensitivity, faster electron transfer and better reversibility. A novel method for determination of calcium dobesilate was proposed. The oxidation peak current was rectilinear with calcium dobesilate concentration in the range of 8.0 × 10−7 to 1.0 × 10−4 mol L−1, with a detection limit of 4.0 × 10−7 mol L−1(S/N = 3) by differential pulse voltammetry. The proposed method was applied to directly determine calcium dobesilate in capsule and urine samples. 相似文献
11.
M. Moreno-Guzmán L. Agüí A. González-Cortés P. Yáñez-Sedeño J. M. Pingarrón 《Journal of Solid State Electrochemistry》2013,17(6):1591-1599
A novel nanocomposite electrode material constituted of gold nanoparticles (AuNPs), multi-walled carbon nanotubes (MWCNTs) and n-octylpyridinium hexafluorophosphate (OPPF6) ionic liquid was prepared and checked for the development of electrochemical (bio)sensing devices. AuNPs/MWCNTs/OPPF6 paste electrodes with micrometer dimensions (500 μm, i.d.) were constructed and applied to the determination of cortisol and androsterone hormones. Regarding cortisol determination, the microsized paste electrode was used to detect 1-naphtol generated upon addition of 1-naphthyl phosphate as enzyme substrate in the competitive immunoassay between alkaline phosphatase-labelled cortisol and cortisol. Squarewave voltammetry allowed determining the hormone within the 0.1- to 10-ng/mL linear range (r?=?0.990) with a detection limit of 15 pg/mL and a EC50 value of 0.46?±?0.06 ng/mL cortisol. The method was applied to the determination of cortisol in urine and serum samples containing a certified cortisol content. Moreover, a microsized enzyme biosensor prepared by bulk modification of the AuNPs/MWCNTs/OPPF6 electrode with the enzyme 3α-hydroxysteroid dehydrogenase was used for the determination of androsterone through the amperometric detection of reduced nicotinamide adenine dinucleotide. A calibration plot with a linear range between 0.1 and 120 μg/mL (r?=?0.993) and a limit of detection of 89 ng/mL were obtained. The biosensor was applied to the analysis of human serum spiked with androsterone at the 250 ng/mL concentration level. 相似文献
12.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐为粘合剂制备了碳糊电极,然后将氧化石墨烯滴涂到碳糊电极表面制成了一种新型的氧化石墨烯修饰碳离子液体电极。研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。实验结果表明,在0.1 mol/L醋酸盐缓冲溶液中(pH4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,在2.0×10-7~1.5×10-5mol/L浓度范围内鸟嘌呤和腺嘌呤的浓度在该电极上与电化学响应信号呈良好的线性关系,相关系数分别为为0.992和0.996。信噪比为3时,检出限为1.0×10-8mol/L。 相似文献
13.
14.
Hong Dai 《Analytica chimica acta》2009,647(1):60-16
Due to the high performance of glassy carbon in the aspects of mechanical strength, electrical conductivity and high corrosion resistance, etc., glassy carbon has been widely used in the electrochemistry. A new form of glassy carbon, glassy carbon microsphere, was utilized to couple with ionic liquid in preparing a new electrochemiluminescent platform for Ru(bpy)3Cl2. Room temperature ionic liquid has been proposed to be very interesting and efficient pasting binder to replace the non conductive organic binders for the fabrication of composite paste electrode. Attributed to the special characteristics of glassy carbon microspheres and room temperature ionic liquid [N-octylpyridium tetrafluoroborate (OPFP)], this new electrochemiluminescent sensor exhibited excellent electrochemiluminescent performance in Ru(bpy)32+ solution. We first found that fentanyl citrate could increase the ECL of Ru(bpy)32+, hence an ECL approach was developed for the determination of fentanyl citrate based on this glassy carbon microspheres based electrochemiluminescent platform with high sensitivity. Under the optimized conditions, the enhanced electrochemiluminescent intensity versus fentanyl citrate concentration was linear in the range of 1.0 × 10−8 to 1.0 × 10−4 mol L−1 with a detection limit of 8.5 × 10−9 mol L−1, and the relative standard deviation for 1.0 × 10−6 mol L−1 fentanyl citrate was 1.90% (n = 10). This protocol has extended the application scopes of glassy carbon material and promoted the application of glassy carbon microspheres in electroanalysis. 相似文献
15.
The electrochemical behaviors of guanosine on the ionic liquid of N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CPE) was studied in this paper and further used for guanosine detection. Guanosine showed an adsorption irreversible oxidation process on the carbon ionic liquid electrode (CILE) with the oxidation peak potential located at 1.12 V (vs. SCE) in a pH 4.5 Britton-Robinson (B-R) buffer solution. Compared with that on the traditional carbon paste electrode, small shift of the oxidation peak potentials appeared but with a great increment of the oxidation peak current on the CILE, which was due to the presence of ionic liquid in the modified electrode adsorbed the guanosine on the surface and promoted the electrochemical response. The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n), and the electrode reaction standard rate constant (ks) were calculated as 0.74, 1.9 and 1.26 × 10−4 s−1, respectively. Under the optimal conditions the oxidation peak current showed a good linear relationship with the guanosine concentration in the range from 1.0 × 10−6 to 1.0 × 10−4 mol/L by cyclic voltammetry with the detection limit of 2.61 × 10−7 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine oxidation. The CILE showed good ability to distinguish the electrochemical response of guanosine and guanine in the mixture solution. The urine samples were further detected by the proposed method with satisfactory results. 相似文献
16.
An electrochemical DNA biosensor was fabricated by self-assembling probe single-stranded DNA (ssDNA) with a nanogold decorated on ionic liquid modified carbon paste electrode (IL-CPE). IL-CPE was fabricated using 1-butylpyridinium hexafluorophosphate as the binder and the gold nanoparticles were electrodeposited on the surface of IL-CPE (Au/IL-CPE). Then mercaptoacetic acid was self-assembled on the Au/IL-CPE to obtain a layer of modified film, and the ssDNA probe was further covalently-linked with mercaptoacetic acid by the formation of carboxylate ester with the help of N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The hybridization reaction with the target ssDNA was monitored with methylene blue (MB) as the electrochemical indicator. Under the optimal conditions, differential pulse voltammetric responses of MB was proportional to the specific ssDNA arachis sequences in the concentration range from 1.0×10(-11) to 1.0×10(-6) mol L(-1) with the detection limit as 1.5×10(-12) mol L(-1) (3σ). This electrochemical DNA sensor exhibited good stability and selectivity with the discrimination ability of the one-base and three-base mismatched ssDNA sequences. The polymerase chain reaction product of arachis Arabinose operon D gene was successfully detected by the proposed method, which indicated that the electrochemical DNA sensor designed in this paper could be further used for the detection of specific ssDNA sequence. 相似文献
17.
Silveira G de Morais A Villis PC Maroneze CM Gushikem Y Lucho AM Pissetti FL 《Journal of colloid and interface science》2012,369(1):302-308
A silica-cerium mixed oxide (SiCe) was prepared by the sol-gel process, using tetraethylorthosilicate and cerium nitrate as precursors and obtained as an amorphous solid possessing a specific surface area of 459 m(2) g(-1). Infrared spectroscopy of the SiCe material showed the formation of the Si-O-Ce linkage in the mixed oxide. Scanning electron microscopy/energy dispersive spectroscopy indicated that the cerium oxide particles were homogenously dispersed on the matrix surface. X-ray diffraction and (29)Si solid-state nuclear magnetic resonance implied non-crystalline silica matrices with chemical environments that are typical for silica-based mixed oxides. X-ray photoelectron spectroscopy showed that Ce was present in approximately equal amounts of both the 3+ and 4+ oxidation states. Cyclic voltammetry data of electrode prepared from the silica-cerium mixed oxide showed a peak for oxidation of Ce(3+)/Ce(4+) at 0.76 V and electrochemical impedance spectroscopy equivalent circuit indicated a porous structure with low charge transfer resistance. In the presence of nitrite, the SiCe electrode shows an anodic oxidation peak at 0.76 V with a linear response as the concentration of the analyte increases from 3×10(-5) at 3.9×10(-3) mol L(-1). 相似文献
18.
Deoxyribonucleic acid (DNA) was electrochemically deposited on a carbon ionic liquid electrode to give a biosensor with excellent redox activity towards paraquat as shown by cyclic voltammetry and differential pulse voltammetry. Experimental conditions were optimized with respect to sensing paraquat by varying the electrochemical parameters, solution pH, and accumulation time of DNA. Under the optimized conditions, a linear relation exists between the reduction peak current and the concentration of paraquat in the range from 5?×?10?8 mol L?1 to 7?×?10?5 mol L?1, with a detection limit of 3.6?×?10?9 mol L?1. The utility of the method is illustrated by successful analysis of paraquat in spiked real water samples. Figure
The DNA was electrodeposited onto the CILE under +1.5?V for 1200?s. The electrochemical behaviors of paraquat on the modified electrode had been studied by cyclic voltammetry and differential pulse voltammetry. Five ml phosphate buffer (pH 7.0) solution was added into an electrochemical cell (10?ml) and then paraquat was successfully added into the cell. The differential pulse voltammograms were recorded when swept from ?0.8?V to ?0.3?V. The peak currents at about ?0.63?V for paraquat were measured. 相似文献
19.
In this work we describe the first report for the determination of promazine using a nanostructuremodified ionic liquid carbon paste electrode in aqueous solutions. To achieve this goal, a novel modified carbon paste electrode using ZnO nanoparticles and 1-methyl-3-butylimidazolium bromide as a binder(ZnO/NPs/ILs/CPE) was fabricated. The oxidation peak potential of promazine at the surface of the ZnO/NPs/ILs/CPE appeared at 685 m V, which was about 65 m V lower than the oxidation potential at the surface of CPE under similar conditions. Also, the peak current was increased to about 4.0 times higher at the surface of ZnO/NPs/ILs/CPE compared to that of CPE. The linear response range and detection limit were found to be 0.08–450 and 0.04 mmol/L, respectively. The modified electrode was successfully used for the determination of promazine in real samples with satisfactory results. 相似文献
20.
《Colloids and surfaces. B, Biointerfaces》2010,79(2):217-221
In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 × 10−8 to 5 × 10−5 M with a detection limit of 8.2 × 10−9 M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries. 相似文献