首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Spontaneous gradient copolymers were prepared in both bulk and miniemulsion systems via Atom Transfer Radical Polymerization (ATRP) utilizing a Simultaneous Reverse and Normal Initiation (SR & NI) process. Both instantaneous and cumulative compositions were used to characterize the gradient copolymers. The gradient copolymers were obtained with an array of gradient compositions ranging from a subtle to strong variation in monomer distribution along the polymer backbones, depending on the ratio of comonomers initially added to the copolymerization system. The compositions of the gradient copolymer produced in miniemulsion systems were similar to those generated in bulk. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3616–3622, 2005  相似文献   

2.
Glass transition temperatures (Tgs) of P(AMA‐co‐BA) copolymers and the corresponding homopolymers, where AMA is allyl methacrylate and BA is n‐butyl acrylate, obtained by means of atom transfer radical polymerization were measured using differential scanning calorimetry. Because of the (pseudoliving) nature of this polymerization technique an increase in molecular weight (MW) is produced as the reaction progresses, which gives rise to an increase in Tgs. This increment can be adequately described by the Fox–Flory's equation in both homopolymers. However, in the spontaneous gradient copolymers of P(AMA‐co‐BA), the expected increase in Tg with the augment of the monomer conversion is compensated by the enrichment of BA as the polymerization reaction progresses. These opposite effects with respect to the Tg values almost balance each other, and therefore no significant influence on the MW or on conversion is found. This fact establishes that Tgs can be used to describe the profile of these gradient copolymers, and can be theoretically determined because of its dependence on the molar fraction in the copolymer. From this dependence on chemical composition along with the experimental behavior, a prediction of the Tg variation with the MW was performed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1845–1855, 2007  相似文献   

3.
Functional spontaneous gradient copolymers of allyl methacrylate (A) and butyl acrylate (B) were synthesized via atom transfer radical polymerization. The copolymerization reactions were carried out in toluene solutions at 100 °C with methyl 2‐bromopropionate as the initiator and copper bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst system. Different aspects of the statistical reaction copolymerizations, such as the kinetic behavior, crosslinking density, and gel fraction, were studied. The gel data were compared with Flory's gelation theory, and the sol fractions of the synthesized copolymers were characterized by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The copolymer composition, demonstrating the gradient character of the copolymers, and the microstructure were analyzed. The experimental data agreed well with data calculated with the Mayo–Lewis terminal model and Bernoullian statistics, with monomer reactivity ratios of 2.58 ± 0.37 and 0.51 ± 0.05 for A and B, respectively, an isotacticity parameter for A of 0.24, and a coisotacticity parameter of 0.33. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5304–5315, 2006  相似文献   

4.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

5.
6.
The rapid atom transfer radical polymerization (ATRP) of benzyl methacrylate (BnMA) at ambient temperature was used to synthesize block copolymers with styrene as the second monomer. Various block copolymers such as AB diblock, BAB symmetric and asymmetric triblock, and ABABA pentablock copolymers were synthesized in which the polymerization of one of the blocks namely BnMA was performed at ambient temperature. It is demonstrated that the block copolymerization can be performed in a controlled manner, regardless of the sequence of monomer addition via halogen exchange technique. Using this reaction condition, the composition (ratio) of one block (here BnMA) can be varied from 1 to 100. It is further demonstrated that in the multiblock copolymer syntheses involving styrene and benzyl methacrylate, it is better to start from the PS macroinitiator compared with PBnMA macroinitiator. The polymers synthesized are relatively narrow dispersed (<1.5). It is identified that the ATRP of BnMA is limited to certain molecular weights of the PS macroinitiator. Additionally, a preliminary report about the synthesis of the block copolymer of BnMA‐methyl methacrylate (MMA), both at ambient temperature, is demonstrated. Subsequent deprotection of the benzyl group using Pd/C? H2 results in methacrylic acid (MAA)–methyl methacrylate (MAA–MMA) amphiphilic block copolymer. GPC, IR, and NMR are used to characterize the synthesized polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2848–2861, 2006  相似文献   

7.
8.
Block copolymers of hyperbranched polyethylene (PE) and linear polystyrene (PS) or poly(methyl methacrylate) (PMMA) were synthesized via atom transfer radical polymerization (ATRP) with hyperbranched PE macroinitiators. The PE macroinitiators were synthesized through a “living” polymerization of ethylene catalyzed with a Pd‐diimine catalyst and end‐capped with 4‐chloromethyl styrene as a chain quenching agent in one step. The macroinitiator and block copolymer samples were characterized by gel permeation chromatography, 1H and 13C NMR, and differential scanning calorimetry. The hyperbranched PE chains had narrow molecular weight distribution and contained a single terminal benzyl chloride per chain. Both hyperbranched PE and linear PS or PMMA blocks had well‐controlled molecular weights. Slow initiation was observed in ATRP because of steric effect of hyperbranched structures, resulting in slightly broad polydispersity index in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3024–3032, 2010  相似文献   

9.
In this work, fluorinated nonamphiphilic gradient copolymers of tert‐butyl acrylate (tBA) and 2,2,3,3,4,4,4‐heptafluorobutyl methacrylate (HFBMA) [poly(tBA‐grad‐HFBMA)] were first synthesized by semibatch atom transfer radical copolymerization of tBA and HFBMA. Their hydrolysis at acidic conditions led to amphiphilic poly(acrylic acid‐grad‐HFBMA). The chemical compositions and structures of these copolymers were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. Their surface properties were evaluated with water contact angle measurement and x‐ray photoelectron spectroscopy. The micellization behaviors of amphiphilic copolymer were also studied by transmission electron microscopy and dynamic light scattering. The results showed that the fluorinated and amphiphilic gradient copolymers could self‐assemble in a dilute solution to form aggregates of morphologies. Furthermore, the effect of pH on the aggregates was investigated to verify that the resulting gradient copolymers were to some extent pH sensitive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Cationic coordinatively saturated complexes of ruthenium(II), [Ru(o‐C6H4‐2‐py)(phen)(MeCN)2]+, bearing different counterions of PF6? and Cl? have been used in the radical polymerization of 2‐hydroxyethyl methacrylate in protic media and acetone under homogeneous conditions. Exchange of PF6? by Cl? increases the solubility of the complex in water. Both complexes led to the fast polymerization under mild conditions, but control was achieved only in methanol and acetone and was better for the complex with Cl?. The polymerization accelerated in aqueous media and proceeded to a high conversion even with a monomer/catalyst = 2000/1, but without control. Polymerization mediated by complex bearing Cl? was slower in protic solvents but faster in acetone and always resulted in lower molecular weight polymers. Thus, the nature of the anion strongly affected the catalytic activity of the complexes and may serve as way of fine‐tuning the catalytic properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A polyimide‐graft‐polystyrene (PI‐g‐PS) copolymer with a polyimide backbone and polystyrene side chains was synthesized by the “grafting from” method using styrene polymerization on a polyimide multicenter macroinitiator via ATRP mechanism. The side chain grafting density z = 0.86 of PI‐g‐PS is rather high for graft‐copolymers synthesized by the ATRP method. Molecular characteristics and solution behavior of PI‐g‐PS were studied in selective solvents using light scattering and viscometry methods. In all solvents, the backbone tends to avoid contact with a poor solvent. To describe the conformation and hydrodynamic properties of PI‐g‐PS macromolecules in thermodynamically good solvents for side chains and PI‐g‐PS, the wormlike spherocylinder model is used. Macromolecules of the studied graft‐copolymer are characterized by high equilibrium rigidities (Kuhn segment length >20 nm). In Θ‐conditions, PI‐g‐PS macromolecules may be modeled by a rigid prolate ellipsoid of revolution with a low asymmetry form and a collapsed backbone as the ellipsoid core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1539–1546  相似文献   

12.
Atom transfer radical polymerization with activators generated by electron transfer initiating/catalytic system (AGET ATRP) of 2‐hydroxyethyl methacrylate (HEMA) was carried out in inverse miniemulsion. Water‐soluble ascorbic acid as a reducing agent and mono‐ and difunctional poly(ethylene oxide)‐based bromoisobutyrate (PEO‐Br) as a macroinitiator were used in the presence of CuBr2/tris[(2‐pyridyl)methyl]amine (TPMA) and CuCl2/TPMA complexes. The use of poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) as a polymer surfactant resulted in the formation of stable HEMA cyclohexane inverse dispersion and PHEMA colloidal particles. All polymerizations were well‐controlled, allowing for the preparation of well‐defined PEO‐PHEMA and PHEMA‐PEO‐PHEMA block copolymers with relatively high molecular weight (DP > 200) and narrow molecular weight distribution (Mw/Mn < 1.3). These block copolymers self‐assembled to form micellar nanoparticles being 10–20 nm in diameter with uniform size distribution, and aggregation number of ~10 confirmed by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4764–4772, 2007  相似文献   

13.
14.
We report the synthesis of new gradient fluorinated copolymers with complexing groups and soluble in supercritical carbon dioxide (scCO2). Poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate‐co‐acetoacetoxyethyl methacrylate) (poly(FDA‐co‐AAEM)) and poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate‐co‐vinylbenzylphosphonic acid diethylester) (poly(FDA‐co‐VBPDE)) gradient copolymers were synthesized by reversible addition fragmentation chain transfer polymerization in α,α,α‐trifluorotoluene. Poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate‐co‐vinylbenzylphosphonic diacid) (poly(FDA‐co‐VBPDA)) gradient copolymer was efficiently obtained by cleavage of the phosphonic ester groups of poly(FDA‐co‐VBPDE). The cloud points of these gradient copolymers in dense CO2 were measured in a variable volume view cell at temperatures between 25 and 65 °C. The gradient copolymers show very good solubility in compressed CO2 with the decreasing order: poly(FDA‐co‐AAEM) ≈ poly(FDA‐co‐VBPDE) > poly(FDA‐co‐VBPDA). Following a green chemistry strategy, poly(FDA‐co‐AAEM) gradient copolymer was successfully synthesized in scCO2 with a good control over number‐average molecular weight and composition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5448–5460, 2009  相似文献   

15.
16.
Recent studies have demonstrated that gradient copolymers exhibit unique thermal properties. Although these properties can be determined by copolymer composition, other factors such as chain and sequence lengths and their distributions can also influence them. Accordingly, the synthesis of gradient copolymers requires simultaneously tailor‐made chain structure and thermal properties. In this work, we carried out a systematic study on the preparation of poly(methyl methacrylate‐grad‐2‐hydroxyethyl methacrylate) [poly(MMA‐grad‐HEMA)] with synchronously tailor‐made chain composition distribution and glass transition temperature (Tg) through semibatch atom transfer radical polymerization. First, a comprehensive model for simultaneously predicting gradient copolymer microstructure and Tg was presented using the concept of pseudo‐kinetic rate coefficients and Johnston equation. The model was validated by comparing simulation results with the classical reference data. Furthermore, the model was used to guide the experimental synthesis of the poly(MMA‐grad‐HEMA) gradient copolymers potentially as excellent damping material. The thermal properties of these gradient copolymer samples were evaluated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号