首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
To enable the development of improved tandem mass spectrometry based methods for selective proteome analysis, the mechanisms, product ion structures, and other factors influencing the gas-phase fragmentation reactions of methionine side-chain derivatized "fixed-charge" phenacylsulfonium ion containing peptide ions have been examined. Dissociation of these peptide ions results in the exclusive characteristic loss of the derivatized side chain, thereby enabling their selective identification. The resultant product ion(s) are then subjected to further dissociation to obtain sequence information for subsequent protein identification. Molecular orbital calculations (at the B3LYP/6-31 + G (d,p) level of theory) performed on a simple peptide model, together with experimental evidence obtained by multistage dissociation of a regioselectively deuterated methionine derivatized sulfonium ion containing tryptic peptide, indicate that fragmentation of the fixed charge containing peptide ions occurs via SN2 reactions involving the N- and C-terminal amide bonds adjacent to the methionine side chain, resulting in the formation of stable cyclic five- and six-membered iminohydrofuran and oxazine product ions, respectively. These studies further indicate that the rings formed via these neighboring group reactions are stable to further dissociation by MS3. As a consequence, the formation of b- or y-type sequence ions are "skipped" at the site of cyclization. Despite this, complete sequence information is still obtained because of the presence of both cyclic products.  相似文献   

2.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

3.
Both the matrix selected and the laser fluence play important roles in MALDI-quadrupole/time of flight (QqTOF) fragmentation processes. "Hot" matrices, such as alpha-cyano4-hydroxycinnamic acid (HCCA), can increase fragmentation in MS spectra. Higher laser fluence also increases fragmentation. Typical peptide fragment ions observed in the QqTOF are a, b, and y ion series, which resemble low-energy CID product ions. This fragmentation may occur in the high-pressure region before the first mass-analyzing quadrupole. Fragment ions can be selected by the first quadrupole (Q1), and further sequenced by conventional MS/MS. This allows pseudo-MS3 experiments to be performed. For peptides of higher molecular weight, pseudo-MS3 can extend the mass range beyond what is usually accessible for sequencing, by allowing one to sequence a fragment ion of lower molecular weight instead of the full-length peptide. Peptides that predominantly show a single product ion after MS/MS yield improved sequence information when this technique is applied. This method was applied to the analysis of an in vitro phosphorylated peptide, where the intact enzymatically-generated peptide showed poor dissociation via MS/MS. Sequencing a fragment ion from the phosphopeptide enabled the phosphorylation site to be unambiguously determined.  相似文献   

4.
The mass spectral fragmentation behavior of ten iridoid glucosides (IGs) has been studied using electrospray ionization (ESI), collision-induced dissociation (CID), and quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). In the negative ESI mass spectra, the deprotonated [M-H](-) ion was observed for all of the ten IGs except gardoside methyl ester, while the formate adduct [M+HCOO](-) ion appeared to be favored by the presence of a methyl ester or a lactone group in the C-4 position when formic acid was added to the mobile phase. The CID MS/MS spectra of the [M-H](-) ions have been used for structural elucidation. Ring cleavages of the aglycone moiety have been observed in the MS/MS spectra, corresponding to (1,4)F(-), (2,6)F(-), (2,7)F(-), and (2,7)F(0) (-) ions, based on accurate mass measurements and the elemental compositions of the product ions. These characteristic ions gave valuable information on the basic structural skeletons. Furthermore, on the basis of the relative abundances of the fragment ions (1,4)F(-) and (2,7)F(-), different sub-classes, such as cyclopentane-type and 7,8-cyclopentene-type IGs, can be differentiated. Ring cleavage of the sugar moieties was also observed, yielding useful information for their characterization. In addition, the neutral losses, such as H(2)O, CO(2), CH(3)OH, CH(3)COOH, and glucosidic units, have proved useful for confirming the presence of functional substituents in the structures of the IGs. Based on the fragmentation patterns of these standard IGs, twelve IGs have been characterized in an extract of Hedyotis diffusa Willd. by means of ultra-performance liquid chromatography/Q-TOF MS/MS, of which six have been unambiguously identified and the other six have been tentatively identified.  相似文献   

5.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

6.
Liquid chromatography coupled with negative and positive electrospray ionisation (ESI) tandem mass spectrometry (MS/MS) and diode-array detection (DAD) was used for determination of phenols in rose hip (Rosa canina) extract. ESI mass spectra of the chromatographically separated phenols gave the molecular weight of the compounds through prominent [M - H](-) ions for most of the compounds and M(+) ions for the anthocyanins. Collision induced dissociation (CID) of the [M - H](-) (or M(+)) precursor ions yielded product ions which determined the molecular weight of the aglycones. In-source fragmentation followed by CID of the resulting deprotonated aglycone ([A - H](-)) provided product ions for the identification of the unconjugated phenols. The identification was based on comparison with product ion spectra of commercial standards. UV-diode-array spectra were used for identity confirmation. This combined approach allowed the identification in rose hip extract of an anthocyanin, i.e. cyanidin-3-O-glucoside, several glycosides of quercetin and glycosides of taxifolin and eriodictyol. Phloridzin was identified, and several conjugates of methyl gallate were also found, one of which was tentatively identified as methyl gallate-rutinoside. Catechin and quercetin were found as the aglycones in the extract.  相似文献   

7.
Predicting the fragmentation patterns of proteins would be beneficial for the reliable identification of intact proteins by mass spectrometry. However, the ability to accurately make such predictions remains elusive. An approach to predict the specific cleavage sites in whole proteins resulting from collision-induced dissociation by use of an improved electrostatic model for calculating the proton configurations of highly-charged protein ions is reported. Using ubiquitin, cytochrome c, lysozyme and β-lactoglobulin as prototypical proteins, this approach can be used to predict the fragmentation patterns of intact proteins. For sufficiently highly charged proteins, specific cleavages occur near the first low-basicity amino acid residues that are protonated with increasing charge state. Hybrid QM/QM′ (QM=quantum mechanics) and molecular dynamics (MD) simulations and energy-resolved collision-induced dissociation measurements indicated that the barrier to the specific dissociation of the protonated amide backbone bond is significantly lower than competitive charge remote fragmentation. Unlike highly charged peptides, the protons at low-basicity sites in highly charged protein ions can be confined to a limited sequence of low-basicity amino acid residues by electrostatic repulsion, which results in highly specific fragmentation near the site of protonation. This research suggests that the optimal charge states to form specific sequence ions of intact proteins in higher abundances than the use of less specific ion dissociation methods can be predicted a priori.  相似文献   

8.
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis.  相似文献   

9.
Methylated and unmethylated CpG-ODNs at A-rich, C-rich, G-rich and T-rich conditions were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The methylted site could be confirmed by comparison of the MS/MS spectra of methylated and unmethylated CpG-ODNs. The fragmentation patterns of the CpG-ODNs were not influenced by the presence of the methyl group but significant effects were observed for nucleobase identities and parent ion charges. The cleavage at guanine was the most facile while that at thymine was the least facile. With the increase of the parent ions charge states, the major dissociation behaviors changed from the middle to the 3' and 5' termini of the sequence.  相似文献   

10.
The fragmentation characteristics of peptides derivatized at the side-chain ε-amino group of lysyl residues via reductive amination with benzaldehyde have been examined using collision-induced dissociation (CID) tandem mass spectrometry. The resulting MS/MS spectra exhibit peaks representing product ions formed from two independent fragmentation pathways. One pathway results in backbone fragmentation and commonly observed sequence ion peaks. The other pathway corresponds to the unsymmetrical, heterolytic cleavage of the Cζ-Nε bond that links the benzyl derivative to the side-chain lysyl residue. This results in the elimination of the derivative as a benzylic or tropylium carbocation and a (n − l)+-charged peptide product (where n is the precursor ion charge state). The frequency of occurrence of the elimination pathway increases with increasing charge of the precursor ion. For the benzylmodified tryptic peptides analyzed in this study, peaks representing products from both of these pathways are observed in the MS/MS spectra of doubly-charged precursor ions, but the carbocation elimination pathway occurs almost exclusively for triply-charged precursor ions. The experimental evidence presented herein, combined with molecular orbital calculations, suggests that the elimination pathway is a charge-directed reaction contingent upon protonation of the secondary ε-amino group of the benzyl-derivatized lysyl side chain. If the secondary ε-amine is protonated, the elimination of the carbocation is observed. If the precursor is not protonated at the secondary ε-amine, backbone fragmentation persists. The application of appropriately substituted benzyl analogs may allow for selective control over the relative abundance of product ions generated from the two pathways.  相似文献   

11.
While collisionally activated dissociation (CAD) pathways for peptides are well characterized, those of intact proteins are not. We systematically assigned CAD product ions of ubiquitin, myoglobin, and bovine serum albumin generated using high-yield, in-source fragmentation. Assignment of >98% of hundreds of product ions implies that the fragmentation pathways described are representative of the major pathways. Protein dissociation mechanisms were found to be modulated by both source declustering potential and precursor ion charge state. Like peptides, higher charge states of proteins fragmented at lower energies next to Pro, via mobile protons, while lower charge states fragmented at higher energies after Asp and Glu, via localized protons. Unlike peptides, however, predominant fragmentation channels of proteins occurred at intermediate charge states via non-canonical mechanisms and produced extensive internal fragmentation. The non-canonical mechanisms include prominent cleavages C-terminal to Pro and Asn, and N-terminal to Ile, Leu, and Ser; these cleavages, along with internal fragments, led to a 45% increase in sequence coverage, improving the specificity of top-down protein identification. Three applications take advantage of the different mechanisms of protein fragmentation. First, modulation of declustering potential selectively fragments different charge states, allowing the source region to be used as the first stage of a low-resolution tandem mass spectrometer, facilitating pseudo-MS3 of product ions with known parent charge states. Second, development and integration of automated modulation of ion funnel declustering potential allows users access to a particular fragmentation mechanism, yielding facile cleavage on a liquid chromatography timescale. Third, augmentation of a top-down search engine improved protein characterization.  相似文献   

12.
An amine specific peptide derivatization strategy involving the use of novel isobaric stable isotope encoded ‘fixed charge’ sulfonium ion reagents, coupled with an analysis strategy employing capillary HPLC, ESI-MS, and automated data dependent ion trap CID-MS/MS, -MS3, and/or ETD-MS/MS, has been developed for the improved quantitative analysis of protein phosphorylation, and for identification and characterization of their site(s) of modification. Derivatization of 50 synthetic phosphopeptides with S,S′-dimethylthiobutanoylhydroxysuccinimide ester iodide (DMBNHS), followed by analysis using capillary HPLC-ESI-MS, yielded an average 2.5-fold increase in ionization efficiencies and a significant increase in the presence and/or abundance of higher charge state precursor ions compared to the non-derivatized phosphopeptides. Notably, 44% of the phosphopeptides (22 of 50) in their underivatized states yielded precursor ions whose maximum charge states corresponded to +2, while only 8% (4 of 50) remained at this maximum charge state following DMBNHS derivatization. Quantitative analysis was achieved by measuring the abundances of the diagnostic product ions corresponding to the neutral losses of ‘light’ (S(CH3)2) and ‘heavy’ (S(CD3)2) dimethylsulfide exclusively formed upon CID-MS/MS of isobaric stable isotope labeled forms of the DMBNHS derivatized phosphopeptides. Under these conditions, the phosphate group stayed intact. Access for a greater number of peptides to provide enhanced phosphopeptide sequence identification and phosphorylation site characterization was achieved via automated data-dependent CID-MS3 or ETD-MS/MS analysis due to the formation of the higher charge state precursor ions. Importantly, improved sequence coverage was observed using ETD-MS/MS following introduction of the sulfonium ion fixed charge, but with no detrimental effects on ETD fragmentation efficiency.  相似文献   

13.
The generation of gaseous polyanions with a Coulomb barrier has attracted attention as exemplified by previous studies of fullerene dianions. However, this phenomenon has not been reported for biological anions. By contrast, electron attachment to multiply charged peptide and protein cations has seen a surge of interest due to the high utility for tandem mass spectrometry (MS/MS). Electron capture dissociation (ECD) and electron transfer dissociation (ETD) involve radical-driven fragmentation of charge-reduced peptide/protein cations to yield N-C(α) backbone bond cleavage, resulting in predictable c'/z(?)-type product ions without loss of labile post-translational modifications (PTMs). However, acidic peptides, e.g., with biologically important PTMs such as phosphorylation and sulfonation, are difficult to multiply charge in positive ion mode and show improved ionization in negative-ion mode. We found that peptide anions ([M - nH](n-), n ≥ 1) can capture electrons within a rather narrow energy range (~3.5-6.5 eV), resulting in charge-increased radical intermediates that undergo dissociation analogous to that in ECD/ETD. Gas-phase zwitterionic structures appear to play an important role in this novel MS/MS technique, negative-ion electron capture dissociation (niECD).  相似文献   

14.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

15.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

16.
Peptide fragments such as b and y sequence ions generated upon low‐energy collision‐induced dissociation have been routinely used for tandem mass spectrometry (MS/MS)‐based peptide/protein identification. The underlying formation mechanisms have been studied extensively and described within the literature. As a result, the ‘mobile proton model’ and ‘pathways in competition model’ have been built to interpret a majority of peptide fragmentation behavior. However, unusual peptide fragments which involve unfamiliar fragmentation pathways or various rearrangement reactions occasionally appear in MS/MS spectra, resulting in confused MS/MS interpretations. In this work, a series of unfamiliar c ions are detected in MS/MS spectra of the model peptides having an N‐terminal Arg or deuterohemin group upon low‐energy collision‐induced dissociation process. Both the protonated Arg and deuterohemin group play an important role in retention of a positive charge at the N‐terminus that is remote from the cleavage sites. According to previous reports and our studies involving amino acid substitutions and hydrogen–deuterium exchange, we propose a McLafferty‐type rearrangement via charge‐remote fragmentation as the potential mechanism to explain the formation of c ions from precursor peptide ions or unconventional b ions. Density functional theory calculations are also employed in order to elucidate the proposed fragmentation mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
To enable the development of a tandem mass spectrometry (MS/MS) based methodology for selective protein identification and differential quantitative analysis, a novel derivatization strategy is proposed, based on the formation of a "fixed-charge" sulfonium ion on the side-chain of a methionine amino acid residue contained within a protein or peptide of interest. The gas-phase fragmentation behavior of these side chain fixed charge sulfonium ion containing peptides is observed to result in exclusive loss of the derivatized side chain and the formation of a single characteristic product ion, independently of charge state or amino acid composition. Thus, fixed charge containing peptide ions may be selectively identified from complex mixtures, for example, by selective neutral loss scan mode MS/MS methods. Further structural interrogation of identified peptide ions may be achieved by subjecting the characteristic MS/MS product ion to multistage MS/MS (MS3) in a quadrupole ion trap mass spectrometer, or by energy resolved "pseudo" MS3 in a triple quadrupole mass spectrometer. The general principles underlying this fixed charge derivatization approach are demonstrated here by MS/MS, MS3 and "pseudo" MS3 analysis of side chain fixed-charge sulfonium ion derivatives of peptides containing methionine formed by reaction with phenacylbromide. Incorporation of "light" and "heavy" isotopically encoded labels into the fixed-charge derivatives facilitates the application of this method to the quantitative analysis of differential protein expression, via measurement of the relative abundances of the neutral loss product ions generated by dissociation of the light and heavy labeled peptide ions. This approach, termed "selective extraction of labeled entities by charge derivatization and tandem mass spectrometry" (SELECT), thereby offers the potential for significantly improved sensitivity and selectivity for the identification and quantitative analysis of peptides or proteins containing selected structural features, without requirement for extensive fractionation or otherwise enrichment from a complex mixture prior to analysis.  相似文献   

18.
Five new monoacylglycerols (MAGs) were isolated from the marine sponge Stelletta sp. by reversed-phase high-performance liquid chromatography and analyzed by positive ion fast atom bombardment mass spectrometry (FAB-MS). FAB mass spectra of these compounds produced abundant sodium-adducted molecules [M+Na]+ from a mixture of 3-nitrobenzyl alcohol and sodium iodide. The structural elucidation of these sponge MAGs was carried out by FAB tandem mass spectrometry (MS/MS). To find diagnostic ions for the characterization of the MAGs, authentic MAGs were initially analyzed by collision-induced dissociation (CID) MS/MS. The CID MS/MS of [M+Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge-remote fragmentation (CRF) provided important information for the characterization of acyl chains substituted at the glycerol backbone, and product ions at m/z 84, 97, 113 and 139 were diagnostic for the sodiated glycerol backbone. On the basis of these fragmentation patterns, the structures of five MAGs extracted from marine sponge were elucidated. In addition, high-resolution mass measurement was performed to obtain the elemental compositions of the MAGs.  相似文献   

19.
Suppression of the selective cleavage at N‐terminal of proline is observed in the peptide cleavage by proteolytic enzyme trypsin and in the fragment ion mass spectra of peptides containing Arg‐Pro sequence. An insight into the fragmentation mechanism of the influence of arginine residue on the proline effect can help in prediction of mass spectra and in protein structure analysis. In this work, collision‐induced dissociation spectra of singly and doubly charged peptide AARPAA were studied by ESI MS/MS and theoretical calculation methods. The proline effect was evaluated by comparing the experimental ratio of fragments originated from cleavage of different amide bonds. The results revealed that the backbone amide bond cleavage was selected by the energy barrier height of the fragmentation pathway although the strong proton affinity of the Arg side chain affected the stereostructure of the peptide and the dissociation mechanism. The thermodynamic stability of the fragment ions played a secondary role in the abundance ratio of fragments generated via different pathways. Fragmentation studies of protonated peptide AACitPAA supported the energy‐dependent hypothesis. The results provide an explanation to the long‐term arguments between the steric conflict and the proton mobility mechanisms of proline effect.  相似文献   

20.
An automated top-down approach including data-dependent MS(3) experiment for protein identification/characterization is described. A mixture of wild-type yeast proteins has been separated on-line using reverse-phase liquid chromatography and introduced into a hybrid linear ion trap (LTQ) Fourier transform ion cylclotron resonance (FTICR) mass spectrometer, where the most abundant molecular ions were automatically isolated and fragmented. The MS(2) spectra were interpreted by an automated algorithm and the resulting fragment mass values were uploaded to the ProSight PTM search engine to identify three yeast proteins, two of which were found to be modified. Subsequent MS(3) analyses pinpointed the location of these modifications. In addition, data-dependent MS(3) experiments were performed on standard proteins and wild-type yeast proteins using the stand alone linear trap mass spectrometer. Initially, the most abundant molecular ions underwent collisionally activated dissociation, followed by data-dependent dissociation of only those MS(2) fragment ions for which a charge state could be automatically determined. The resulting spectra were processed to identify amino acid sequence tags in a robust fashion. New hybrid search modes utilized the MS(3) sequence tag and the absolute mass values of the MS(2) fragment ions to collectively provide unambiguous identification of the standard and wild-type yeast proteins from custom databases harboring a large number of post-translational modifications populated in a combinatorial fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号