首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gholivand MB  Nozari N 《Talanta》2001,54(4):597-602
Poly(vinyl chloride) membrane electrode, that is highly selective and sensitive to Cu(II) ions, was developed by using 2,2'-dithiodianiline and dibutyl phthalate as carrier and plasticizer, respectively. The electrode exhibits good potentiometric response for Cu(II) over a wide concentration range (5.0x10(-2)-7.0x10(-7) mol l(-1)) with Nernstian slope of 30+/-1 mV per decade. The response time of the electrode is 10 s and it has been used for a period of one month and exhibits good selectivity towards Cu(2+) in comparison to alkali, alkaline earth, transition and heavy metal ions, with no interference caused by Pb(2+), Cd(2+) and Fe(+2) which are known to interfere with many other copper electrodes.  相似文献   

2.
Mahajan RK  Parkash O 《Talanta》2000,52(4):691-693
A PVC membrane based on bis-pyridine tetramide macrocycle exhibits a good response for silver ion over a wide concentration range (1.0x10(-1)-4.0x10(-5) mol l(-1)). The electrode has a relatively fast response time and can be used for more than 5 months without observing any divergence. High selectivity for Ag(+) ions over that of Na(+), K(+), Ca(2+), Sr(2+), Pb(2+) and Hg(2+) have been observed.  相似文献   

3.
Abbaspour A  Izadyar A 《Talanta》2001,53(5):1009-1013
A PVC-based membrane of 4-dimethylaminoazobenzene reveals a Nernstian potentiometric response (with slope of 19.5+/-0.6 mV/decade and a correlation coefficient of 0.999) for Cr(III) over a wide concentration range (1.66 x 10(-6)-1.0 x10(-2) mol dm(-3)). The potential of this electrode is independent of pH in the range of 3.0-5.5. It has a fast response time of about 10 s and was used for a period of 3 months with good reproducibility. The detection limits of this membrane electrode was 8 x 10(-7) M. the proposed electrode has been used as an indicator electrode in the potentiometric titration of Cr(III) with EDTA. This sensor exhibits a very good selectivities for Cr(III) over a wide variety of metal ions.  相似文献   

4.
A coated-wire ion-selective electrode (CWISE), based on a Schiff base as a neutral carrier, was successfully developed for the detection of Pb(II) in aqueous solution. CWISE exhibited a linear response with a Nernstian slope of 29.4 +/- 0.5 mV/decade within the concentration range of 1.0 x 10(-5) - 1.0 x 10(-1) M lead ion. CWISE has shown detection limits of 5.0 x 10(-6) M. The electrode exhibited good selectivity over a number of alkali, alkaline earth, transition and heavy metal ions. This sensor yielded a steady potential within 10 to 20 s at a linear dynamic range. The electrode was suitable for use in aqueous solutions in a pH range of 2.0 to 5.0. Applications of this electrode for the determination of lead in real samples and as indicator electrode for potentiometric titration of Pb2+ ion using K2CrO4 are reported.  相似文献   

5.
Abbaspour A  Moosavi SM 《Talanta》2002,56(1):91-96
The utility of carbon paste electrode modified with DTPT (3,4-dihydro-4,4,6-trimethyl-2(1H)-pyrimidine thione) for the potentiometric determination of Cu(II) in aqueous medium is demonstrated. The electrode exhibits linear response to Cu(II) over a wide concentration range (9.77x10(-7)-7.6x10(-2)) with Nernstian slope of 30+/-2 mV per decade. It has a response time of about 45 s and can be used for a period of two months with good reproducibility. The detection limit of this electrode was 7.0x10(-7) M. The proposed electrode shows a very good selectivity for Cu(II) over a wide variety of metal ions. This chemically modified carbon paste electrode was successfully used for the determination of Cu(II) in electronics waste sample solution.  相似文献   

6.
The PB film-modified electrode was used as an amperometric detector for flow injection analysis of ascorbic acid. The modified electrode detector showed good sensitivity, stability and reproducibility. The calibration curve for ascorbic acid was linear over the concentration range from 5.0x10(-6) to 1.0x10(-3) mol l(-1) with a slope of 19.9 mA mol(-1) per litre and a correlation coefficient of 0.999. The detection limit of this method was 2.49x10(-6) mol l(-1). The relative standard deviation of six replicate injections of 2.5x10(-4) mol l(-1) ascorbic acid was 2.5%. The results obtained for ascorbic acid determination in pharmaceutical products are in good agreement with those obtained by using the procedure involving the reaction between triiodide and ascorbic acid.  相似文献   

7.
A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions.  相似文献   

8.
A coated-wire ion-selective electrode (ISE) based on cyclam (1,4,8,11-tetraazacyclotetradecane) as a neutral carrier in a polyvinyl chloride (PVC) matrix was fabricated for the determination of Ag(I) ions. The coated-wire ISE exhibited a linear Nernstian response over the range 1 x 10(-1) to 1 x 10(-7) M with a slope of 59 +/- 2 mV per decade change and a detection limit of 5 x 10(-8) M. The ISE shows a greater preference for Ag over other cations with good precision. The electrode was selective towards Ag(I) ions in the presence of 13 different metal ions tested. The selectivity coefficients (K(ij)) were determined for Na(I), K(I), Mg(II), Ca(II), Ba(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II) and Hg(II). The selectivity coefficients of these cations are in the range of 10(-4) to 10(-2). This ISE was used for the determination of free silver and total silver in electroplating bath solutions, additives and brighteners.  相似文献   

9.
The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4x10(-8) mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4x10(-8)-8x10(-7) mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant.  相似文献   

10.
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cacha?a) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L(-1) (Pb2+), 8.00-100.0 x 10(-7) mol L(-1) (Cu2+) and 2.00-10.0 x 10(-6) mol L(-1) (Hg2+). Detection limits of 4.0 x 10(-8) mol L(-1) (Pb2+), 2.0 x 10(-7) mol L(-1) (Cu2+) and 4.0 x 10(-7) mol L(-1) (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples.  相似文献   

11.
Arvand M  Asadollahzadeh SA 《Talanta》2008,75(4):1046-1054
A novel ion-selective PVC membrane sensor for Al(III) ions based on 6-(4-nitrophenyl)-2-phenyl-4-(thiophen-2-yl)-3,5-diaza-bicyclo[3.1.0]hex-2-ene (NTDH) as a new ionophore has been prepared and studied. The electrode exhibit a good response for aluminum ion over concentration range of 1.0x10(-6) to 1.0x10(-1) mol L(-1) with a Nernstian slope of 19.6+/-0.4 mV per decade and low detection limit of 6.3x10(-7) mol L(-1). The best performance was obtained with membrane composition 30% poly(vinyl chloride), 62% acetophenone, 5% oleic acid, 3% ionophore and 2 ml tetrahydrofuran. NTDH-based electrode was suitable for aqueous solutions of pH 3. It has relatively fast response time (approximately 10 s) and can be used at least for 3 months without any considerable divergence in potentials. The proposed membrane electrode revealed good selectivity for Al(III) ions over a wide variety of other cations. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. The formation constant and stoichiometry ratio of ionophore-Al(III) complex were calculated at 25 degrees C by using segmented sandwich membrane method. It was used in non-aqueous solvents and also as indicator electrode in potentiometric determination of Al(III) ions in some real samples.  相似文献   

12.
A nitrate-selective electrode based on a recently synthesized bis(2-hydroxyanil)acetylacetone lead(II) complex [(haacac)Pb] has been developed. Among different compositions studied, a membrane containing 30.7% poly(vinyl chloride) (PVC), 61.3% dibutyl phthalate (DBP) as a plasticizer, 3% methyltrioctylammonium chloride (MTOAC) as a cationic additive and 5% ionophore (all w/w) exhibited the best potentiometric response toward nitrate ion in aqueous solutions. The potentiometric response of the electrode was linear with a Nernstian slope of -58.8 mV decade(-1) within the NO3- concentration range of 2 x 10(-5)-1 x 10(-1) mol dm(-3). The response time of the electrode was < or =10 s over the entire linear concentration range of the calibration plot. The electrode is suitable for use within the pH range of 5.3-11. The selectivity coefficients for the proposed electrode were improved for some interferences, when compared with those of commercially available nitrate-selective electrodes.  相似文献   

13.
The preparation of a lead-selective electrode based on 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis-(diphenylphosphinoylmethoxy)calix[4]arene (1) as an ionophore is reported. The plasticized PVC membrane containing 30% PVC, 57% ortho-nitrophenyloctylether (NPOE), 4% sodium tetraphenylborate (NaTPB) and 9% ionophore 1 was directly coated on a graphite electrode. It exhibits a nearly Nernstian slope of 28.0 +/- 0.2 mV decade(-1) over a concentration range of 1 x 10(-5) - 1 x 10(-2) mol dm(-3) with a detection limit of 1.4 x 10(-6) mol dm(-3). The response time of the electrode was found to be ca. 17 s. The potential of the sensor was independent of the pH variation in the range 3.5 - 5.0. The selectivity of the electrode performance towards lead ions over Th4+, La3+, Sm3+, Dy3+, Y3+, Ca2+, Sr2+, Cd2+, Mn2+, Zn2+, Ni2+, Co2+, NH4+ Ag+, Li+, Na+ and K+ ions was investigated. The prepared electrode was used successfully as an indicator electrode for a potentiometric titration of a lead solution using a standard solution of EDTA. The applicability of the sensor for Pb2+ measurements in various synthetic water samples spiked with lead nitrate was also checked.  相似文献   

14.
A PVC membrane electrode for lead ions based on phenyl disulfide as the membrane carrier was developed. The electrode exhibits a good Nernstian slope of 29.3 +/- 0.7 mV/decade and a linear range of 2.0 x 10(-6)-1.0 x 10(-2) M for Pb(NO3)2. The limit of detection is 1.2 x 10(-6) M. It has a response time of 45 s and can be used for at least fifty days without any divergence in potential. The proposed membrane sensor revealed high selectivity for Pb2+ over a wide variety of other metal ions and could be used in the pH range of 3.5-6.3. The electrode was used as an indicator electrode in potentiometric titration of lead ions.  相似文献   

15.
A new heterogeneous precipitate of an organic-inorganic composite cation-exchanger poly-o-toluidine Zr(IV) phosphate was utilized for the preparation of a Hg(II) ion-sensitive membrane electrode for the determination of Hg(II) ions in real aqueous as well as in real samples. The electrode showed good potentiometric response characteristics, and displayed a linear log[Hg(2+)] versus EMF response over a wide concentration range of 1 x 10(-1) - 1 x 10(-6) M with a Nernstian slope of 30 mV per decade change in concentration with a detection limit of 1 x 10(-6). The membrane electrode showed a very fast response time of 5 s and could be operated well in the pH range 2 - 8. The selectivity coefficients were determined by the mixed-solution method, and revealed that the electrode was selective in the presence of interfering cations; however most of these did not show significant interference in the concentration range of 1 x 10(-1) - 1 x 10(-4) M. The lifetime of the membrane electrode was observed to be 120 days. The analytical utility of this electrode was established by employing it as an indicator electrode in the potentiometric titrations of Hg(2+) ions from a synthetic mixture as well as drain water.  相似文献   

16.
A copper(II) ion-selective electrode based on a recently synthesized 2-quinolyl-2-phenylglyoxal-2-oxime (phenylglyoxal-alpha-monoxime) has been developed. The PVC-based membrane containing phenylglyoxal-alpha-monoxime, dibutyl phthalate as plasticizer, and sodium tetraphenylborate as anion excluder and membrane modifier, was directly coated on the surface of a platinum-wire electrode. The response of the electrode was linear with a near-Nernstian slope of 28.2 mV decade(-1) within the Cu2+ ion concentration range 1x10(-6)-1x10(-1) mol x L(-1). The response time for the proposed electrode to achieve a 95% steady potential for Cu2+ concentrations ranging from 1x10(-1) to 1x10(-6) mol x L(-1) is between 10 and 50 s, and the electrode is suitable for use within the pH range of 3 to 6.5. The electrode has a detection limit of 5x10(-7) mol x L(-1) Cu2+ and its selectivity relative to several alkali, alkaline earth, transition, and heavy metal ions was good. The coated-wire electrode could be used for at least two months without a considerable alteration of its potential. Applications of the electrode for determination of copper in milk powder samples and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA are reported.  相似文献   

17.
A new PVC membrane mercury(II) ion electrode based on N,N-dimethylformamide-salicylacylhydrazone (DMFAS) as an ionophore is described, which shows excellent potentiometric response characteristics and displays a linear log[Hg(2+)] versus EMF response over a wide concentration range between 6.2 x 10(-7) and 8.0 x 10(-2) M with a Nerstian slope of 29.6 mV per decade and a detection limit of 5.0 x 10(-7) M. The response time for the electrode is less than 30 s and the electrode can be used for more than 2 months with less than a 2 mV observed divergence in a potentials. The proposed electrode exhibits very good selectivity for mercury(II) ions over many cations in a wide pH range (pH 1 - 4). The electrode was also applied to the determination of a mercury(II) ion in vegetables and in Azolla filiculoides.  相似文献   

18.
The use of an amperometric biosensor for the salicylate determination in blood serum is described. The biosensor is based on salicylate hydroxylase (EC 1.14.13.1) electropolymerized onto a glassy carbon-working electrode with polypyrrole and glutaraldehyde, to improve the biosensor lifetime. The hexacyanoferrate (II) was also incorporated to work as a redox mediator to minimize possible interferences. The salicylate is enzymatically converted to catechol, which is monitored amperometrically by its electrooxidation at+0.170 V versus SCE (saturated calomel electrode). Salicylate determination was carried out maintaining the ratio between beta-NADH and salicylate at 4:1 (30 degrees C). The amperometric response of the biosensor was linearly proportional to the salicylate concentration between 2.3x10(-6) and 1.4x10(-5) mol l(-1), in 0.1 mol l(-1) phosphate buffer (pH 7.8), containing 0.1 mol l(-1) KCl and 5.0x10(-4) mol l(-1) Na(2)H(2)EDTA, as supporting electrolyte. The recovery studies, in the presence of several interfering compounds, showed recoveries between 96.4 and 104.8%. The useful lifetime of the biosensor in the concentration range evaluated was at least 40 days, in continuous use. Blood serum samples analyzed by this biosensor showed a good correlation compared to the spectrophotometric method (Trinder) used as reference, presenting relative deviations lower than 7.0%.  相似文献   

19.
Three mercapto compounds [2-mercapto-5-(1-methyl-5-nitroimidazole-2-yl)-1,3,4-thiadiazole] (MMNIT), [2-mercapto-5-(5-nitrofuran-2-yl)-1,3,4-thiadiazole] (MNFT) and [2-mercapto-5-(5-nitrothiophen-2-yl)-1,3,4-thidiazole] (MNTT) were used for self-assembled-gold nanoparticle (SAGNP) modified carbon paste electrodes. The electrodes were applied as indicator electrodes for potentiometric determination of Cu(II) ion. The prepared electrodes exhibit a Nernstian slope of 31.0+/-0.5 mV per decade for Cu(II) ion over a wide concentration range of 7.9x10(-9)-3.2x10(-2), 7.9x10(-9)-7.9x10(-4), and 2.8x10(-8)-7.9x10(-3) mol L(-1) for MMNIT, MNFT and, MNTT, respectively. The detection limits of electrodes were 3.5 (+/-0.2)x10(-9), 4.1x10(-9), and 4.1x10(-8) mol L(-1) of copper ion, respectively. The potentiometric responses of electrodes based on MMNIT, MNFT, and MNTT are independent of the pH of test solution in the pH range 2.0-5.5, 2.5-7.0, and 2.0-6.5, respectively. They have quick response with response time of about 5 s. The proposed electrodes show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrodes were successfully employed to detect Cu(II) ion in hair and water samples.  相似文献   

20.
Three simple, accurate and sensitive spectrophotometric methods are developed for the determination of some new drugs for the treatment of osteoporosis: risedronate sodium (I), alendronate sodium (II) and etidronate disodium (III). The first method is based on the measurement of difference in absorbance (Delta A) of risedronate sodium in 0.01 mol l(-1) hydrochloric and 0.1 mol l(-1) sodium hydroxide at 262 nm. Beer's law is obeyed over a concentration range of 15-150 microg ml(-1) with mean recovery 99.75+/-1.22 and molar absorptivity (epsilon) 1.891 x 10(3). The second method is based on the reaction of the primary amino group of (II) with ninhydrin reagent in methanolic medium in the presence of 0.05 mol l(-1) sodium bicarbonate. The colored product is measured at 568 nm, and the linearity range is found to be 3.75-45 microg ml(-1) with mean recovery 99.77+/-0.73 and epsilon 9.425 x 10(3). The third method is based on oxidation of the three mentioned drugs with ceric (IV) sulphate in 0.5 mol l(-1) sulphuric acid at room temperature and subsequent measurement of the excess unreacted cerium (IV) sulphate at 320 nm. The method obeyed Beer's law over a concentration range of 2-24 microg ml(-1) for the three drugs with mean recovery 99.79+/-1.16, 99.73+/-1.38 and 99.86+/-1.13 and epsilon 14.427 x 10(3), 13.813 x 10(3) and 14.000 x 10(3) for drugs I, II, III respectively. The proposed methods were successfully applied for the determination of the studied drugs in bulk powder and in pharmaceutical formulations. The results were found to agree statistically with those obtained the reported methods. Furthermore, the methods were validated according to USP regulations and also assessed by applying the standard addition technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号