首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim of this work is to obtain a convenient data set for the validation of a recently developed three-dimensional constitutive muscle model. Therefore, an optical measurement technique is used to reconstruct a geometrical model of a rabbit soleus muscle. Thus, the muscle geometry and also the generated force characteristics are measured. The proposed numerical model is able to reproduce the experimental results in an adequate manner. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
Markus Böl  Stefanie Reese 《PAMM》2005,5(1):291-292
The structure of a skeletal muscle can be seen as a complex hierarchical organisation in which thousands of muscle fibers are arranged within a connective tissue network. Inside of the single muscle fibre many force-producing cells, known as sarcomeres, are connected and take care of the contraction of the whole muscle. The material behaviour of muscles is nonlinear. Due to the fact that muscles can have large deformations in space, geometrical non-linearities must additionally be taken into account. For the simulation of such a behaviour the finite element method is used in the present approach. The material behaviour of the muscle is split into a so-called active and a passive part. To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived. Additionally to these unit cells other truss elements are attached representing bundles of muscle fibers and therefore the active part of the material behaviour. The contractile behaviour of the muscle is mainly in.uenced by the stretch of the muscle fibres, the shortening velocity and the activation status of the muscle. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Benjamin Klusemann 《PAMM》2016,16(1):361-362
The mechanical behavior of most materials is dictated by a present or emergent underlying microstructure which is a direct result of different, even competing physical mechanisms occurring at lower length scales. In this work, energetic microstructure interaction via different non-convex contributions to the free energy in metals is modeled. For this purpose rate dependent gradient extended crystal plasticity models at the glide-system level are formulated. The non-convex energy serves as the driving force for the emergent microstructure. The competition between the kinetics and the relaxation of the free energy is an essential feature of the model. Non-convexity naturally arises in finite-deformation single-slip crystal plasticity and the results of the gradient model for this case are compared with an effective laminate model based on energy relaxation. Similarities as well as essential differences are observed and explained. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Challenges in computational simulation of the mechanical behavior of soft tissues and organs for clinical applications are related to the reliability of the models with respect to the anatomy, the mechanical interactions between different tissues, and the non linear (time dependent) force deformation characteristics of soft biological materials. In this paper a 3D finite element model of the face and neck, which has applications in surgical devices optimization and surgery planning, is presented. Bones, muscles, skin, fat, and superficial muscoloaponeurotic system (SMAS) were reconstructed from magnetic resonance images and their shape, constraints and interactions have been modeled according to anatomical, plastic and reconstructive surgery literature. Non linear time dependent constitutive equations are implemented in the numerical model, based on the Rubin-Bodner model. For the present calculations a simplified hyperelastic formulation has been used. The corresponding model parameters were selected according to previous work with mechanical measurements ex vivo on facial soft tissue. For determination of model parameters, in particular the ones corresponding to the time dependent behavior, an instrument for measuring the relaxation behavior of the face tissue in vivo was developed. The experimental set-up is described and results are presented for tests performed on different locations of the face (jaw, mid-face, parotid regions) and neck. The measured “long term” reaction force of the facial soft tissue is compared to numerical results. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The computation of foam–like structures is still a topic of research. There are two basic approaches: the microscopic model where the foam–like structure is entirely resolved by a discretization (e.g. with Timoshenko beams) on a micro level, and the macroscopic approach which is based on a higher order continuum theory. A combination of both of them is the FE2-approach where the mechanical parameters of the macroscopic scale are obtained by solving a Dirichlet boundary value problem for a representative microstructure at each integration point. In this contribution, we present a two–dimensional geometrically nonlinear FE2-framework of first order (classical continuum theories on both scales) where the microstructures are discretized by continuum finite elements based on the p-version. The p-version elements have turned out to be highly efficient for many problems in structural mechanics. Further, a continuum–based approach affords two additional advantages: the formulation of geometrical and material nonlinearities is easier, and there is no problem when dealing with thicker beam–like structures. In our numerical example we will investigate a simple macroscopic shear test. Both the macroscopic load displacement behavior and the evolving anisotropy of the microstructures will be discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We relate Gaussian curvature to the gyroscopic force, thus giving a mechanical interpretation of the former and a geometrical interpretation of the latter. We do so by considering the motion of a spinning disk constrained to be tangent to a curved surface. It is shown that the spin gives rise to a force on the disk that is equal to the magnetic force on a point charge moving in a magnetic field normal to the surface, of magnitude equal to the Gaussian curvature, and of charge equal to the disk's axial spin. In a special case, this demonstrates that the precession of Lagrange's top is due to the curvature of a sphere determined by the parameters of the top. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Recent studies in mammalian hearts show that left ventricular wall thickening is an important mechanism for systolic ejection, and that during contraction the cardiac muscle develops significant stresses in the muscular cross-fiber direction. We suggested that the collagen network surrounding the muscular fibers could account for these mechanical behaviors. To test this hypothesis we develop a model for large deformation response of active, incompressible, nonlinear elastic and transversely isotropic living soft tissue (such as cardiac or arteries tissues) in which we include a coupling effect between the connective tissue and the muscular fibers. Then, a three-dimensional finite element formulation including this internal pseudo-active kinematic constraint is derived. Analytical and finite element solutions are in a very good agreement. The numerical results show this wall thickening effect with an order of magnitude compatible with the experimental observations.  相似文献   

9.
Within dynamical simulations of biomechanical motion, the actuation of a multibody system (representing bones and joints) can be implemented via Hill-type muscle models. The main task of these models is to describe the typical force-length and force-velocity relation of real muscles. Thus, it is crucial that the muscle path itself, which is dynamically changing during a motion, is represented correctly in the model, because its length and the change of its length in time, i.e. its concentric or eccentric velocity, are related to the scalar value of the muscle force amount and to the direction of the force acting on the multibody system. In our work, we assume that a muscle tone is always present, even at rest, which leads to the conclusion that tendons and muscles are supposed to follow the path of minimal distance between two insertion points not intersecting the bones. This problem can for example be formulated as a constrained nonlinear optimisation problem, or it can be solved with a more efficient algorithm that determines this path as a G1 (geometrical) continuous combination of given curves. Within this work, both procedures are compared concerning the resulting path length and force directions and their computational costs. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The scaled boundary finite element method (SBFEM) has been used in many fields of engineering to solve the governing equations in bounded and unbounded 2D as well as 3D domains. In solid mechanics, the semi-analytical solution strategy of the SBFE formulation (numerical in circumferential direction, analytical in radial direction) is based on the assumption of linear elastic material behavior and only small geometrical changes. However, a large group of materials (e.g. rubber) shows geometrical and physical nonlinearity at mechanical loading. In this contribution, the extension of the SBFEM to geometrical and physical nonlinearity is examined. A plane finite element is developed which uses the concept of shape functions constructed by the SBFEM in the framework of a nonlinear finite element analysis. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The macroscopic mechanical response of skeletal muscle tissue is mainly influenced by the properties and arrangement of microstructural elements, such as, for example, sarcomeres and connective tissue. Like for many biological materials, the mechanical properties of skeletal muscle tissue can vary quite significantly between different specimens like, for example, different persons or muscle types. Current state-of-the-art continuum-mechanical muscle models often lack the ability to take into account such variations in a natural way. Further, phenomenological constitutive laws face the challenge that appropriate material parameter sets need to be found for each tissue variation. Thus, the present work aims to identify the microstructural features and parameters governing the overall mechanical response and to incorporate them into a macroscopic material model by applying suitable homogenisation methods. The motivation hereby is that the estimation of material parameters for microstructures, such as collagen fibres, can be done in a more reliable and general way and that fluctuations between specimens are included by, for example, adapting the alignment of the collagen fibres inside the muscle. Moreover, instead of computationally expensive homogenisation methods like FE2, this work proceeds from well-founded analytical homogenisation techniques in order to keep the model as simple as possible. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
The macroscopic mechanical behavior of many functional materials crucially depends on the formation and evolution of their microstructure. When considering martensitic shape memory alloys, this microstructure typically consists of laminates with coherent twin boundaries. We suggest a variational-based phase field model for the dissipative evolution of microstructure with coherence-dependent interface energy and construct a suitable gradient-extended incremental variational framework for the proposed dissipative material. We use our model to predict laminate microstructure in martensitic CuAlNi. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
The use of the general theory of the mechanics of muscle tissue for constructing a simplified model describing the mechanical behavior of a blood vessel wall containing muscle layers is dicussed. A formalization of the concept of tonus is proposed and the activator concentration in the myofibrils is introduced as a measure of that characteristic. The properties of vessels having a static characteristic with a descending branch are considered, particular attention being given to the case where the descending branch is associated with a strong dependence of the tonus on the state of stress of the vessel wall.  相似文献   

16.
Tendon functions by transmitting tensile loads from muscle to bone. Morphologically, it can be described as a macromolecular multicomposite material, basically consisting of collagen fibrils held together by a soft, hydrated matrix material. Recently, tendon has been deformed beyond the "in vivo" elastic limit and by cyclical loading systematically damaged. Using high-resolution electron microscopy, decomposition of the collagen fibril into subfibrils (15 nm diameter) and microfibrils (3.5 nm diameter) has been noted. The interfacial adhesion between such units is strongly dependent on age, and is probably related with crosslinking phenomena observed by biochemical methods. In addition, tendon collagen contains a considerable amount of water throughout the entire structure which strongly affects its overall mechanical behavior. The various bound states of water have been identified using primarily dynamic mechanical spectroscopy coupled with more conventional methods of structural characterization.Published in Mekhanika Polimerov, No. 4, pp. 693–701, July–August, 1976.  相似文献   

17.
18.
A modelling approach is described using the modules vehicle body, front axle and rear axle. All these modules are virtually assembled by CAD software and Simpack, a commercial multibody dynamics tool. The geometrical data are found from the CAD model while the mechanical data for the entire vehicle are evaluated by parameter identification based on mechanical principles. In detail, the static measurement and error analysis of the center of mass is explained as well as the dynamic tests to identify the moments of inertia of the car. Further, spring and damper characteristics are identified. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The results of a theoretical (model) study of the behavior of a muscle treated as a unidimensional viscoelastic bundle of fibers of finite length are presented. Solution of a second-order differential equation which takes account of the wave processes in the medium under consideration provides an explanation for several of the dynamic effects which are observed in experimental investigations into muscle mechanics (the jumps in the stresses during the linear extension of a muscle, the rapid weakening during its contraction, and so on). The analysis shows that the empirical equation for a muscle due to Hill may be considered as a relationship which is a consequence of its viscoelastic properties and wave phenomena.  相似文献   

20.
Variations in cutting forces significantly influence the tool wear and part quality in machining high-volume SiC-particle-reinforced aluminum matrix (SiCp/Al) composites. Properties of the reinforcement SiC particles, such as size and volume fraction, contribute to the change in the cutting forces. This paper presents a cutting force model based on the geometrical and mechanical nature of the tool and workpiece, considering the effect of the SiC reinforcement particles. The cutting force is predicted as three components (Fz, Fx, and Fy) and the resultant cutting force Fτs. The cutting force was considered to generate three deformed zones: (a) shear deformed zone, (b) friction deformed zone on the chip–tool interface, (c) plow deformed zone. The effect of SiC reinforcement particles on friction deformed zone is analyzed emphatically. The friction force from friction deformed zone was obtained by calculating the sliding friction force and rolling friction force. To verify the feasibility and validity of the predicted model of cutting force, cutting experiments were performed with different combinations of cutting speed, feed rate, depth of cut, and tool nose radius. The predicted cutting force values demonstrate good agreement with the measured experimental cutting force values in most cutting conditions. The average percentages of the prediction error were 1.93%, 6.20%, and 10.48% for the Fz, Fx, and Fy components, respectively, thus proving the validity and accuracy of the predicted model of cutting forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号