首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Applied Mathematical Modelling》2014,38(21-22):5239-5255
The strong nonlinear behavior usually exists in rotor systems supported by oil-film journal bearings. In this paper, the partial derivative method is extended to the second-order approximate extent to predict the nonlinear dynamic stiffness and damping coefficients of finite-long journal bearings. And the nonlinear oil-film forces approximately represented by dynamic coefficients are used to analyze nonlinear dynamic performance of a symmetrical flexible rotor-bearing system via the journal orbit, phase portrait and Poincaré map. The effects of mass eccentricity on dynamic behaviors of rotor system are mainly investigated. Moreover, the computational method of nonlinear dynamic coefficients of infinite-short bearing is presented. The nonlinear oil-film forces model of finite-long bearing is validated by comparing the numerical results with those obtained by an infinite-short bearing-rotor system model. The results show that the representation method of nonlinear oil-film forces by dynamic coefficients has universal applicability and allows one easily to conduct the nonlinear dynamic analysis of rotor systems.  相似文献   

2.
This paper investigates the bifurcation and nonlinear behavior of an aerodynamic journal bearing system taking into account the effect of stationary herringbone grooves. A finite difference method based on the successive over relation approach is employed to solve the Reynolds’ equation. The analysis reveals a complex dynamical behavior comprising periodic and quasi-periodic responses of the rotor center. The dynamic behavior of the bearing system varies with changes in the bearing number and rotor mass. The results of this study provide a better understanding of the nonlinear dynamics of aerodynamic grooved journal bearing systems.  相似文献   

3.
This paper employs a hybrid numerical method combining the differential transformation method and the finite difference method to study the nonlinear dynamic behavior of a flexible rotor supported by a spherical gas-lubricated bearing system. The analytical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, and quasi-periodic responses of the rotor center and the journal center. Furthermore, the results reveal the changes which take place in the dynamic behavior of the bearing system as the rotor mass and bearing number are increased. The current analytical results are found to be in good agreement with those from other numerical methods. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of spherical gas film rotor–bearing systems.  相似文献   

4.
This paper presents the effect of rotor mass on the nonlinear dynamic behavior of a rigid rotor-bearing system excited by mass unbalance. Aerodynamic four-lobe journal bearing is used to support a rigid rotor. A finite element method is employed to solve the Reynolds equation in static and dynamical states and the dynamical equations are solved using Runge-Kutta method. To analyze the behavior of the rotor center in the horizontal and vertical directions under different operating conditions, the dynamic trajectory, the power spectra, the Poincare maps and the bifurcation diagrams are used. From this study, results show how the complex dynamic behavior of this type of system comprising periodic, KT-periodic and quasi-periodic responses of the rotor center varies with changes in rotor mass values by considering two bearing aspect ratios. Results of this study contribute a better understanding of the nonlinear dynamics of an aerodynamic four-lobe journal bearing system.  相似文献   

5.
L. Esmaeili  B. Schweizer 《PAMM》2011,11(1):567-568
The pressure field in thin fluid films can quite precisely be calculated by Reynolds fluid-film equation. In some problems, it may be useful to couple thin fluid-films with general 2D or 3D fluid flows. In the current work, we analyze the fluid flow, pressure and temperature field in a hydrodynamic journal bearing with a rectangular oil groove. Pressure and temperature in the fluid gap are calculated by means of the Reynolds equation and the 2D energy equation. Cavitation effects are taken into account by incorporating a 2-phase cavitation approach. In order to calculate the velocity and pressure field in the oil groove, the 2D Navier-Stokes equations are used; the temperature distribution in the oil groove is computed by means of the 2D energy equation. Appropriate coupling conditions for velocity, pressure and temperature are formulated in order to couple the flow in the fluid gap with the flow in the oil groove. Thermal expansion of journal shaft and bearing housing are also taken into account, since the bearing clearance changes with increasing temperature. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This paper employs a hybrid numerical method combining the differential transformation method and the finite difference method to study the bifurcation and nonlinear dynamic behavior of a flexible rotor supported by a relative short spherical gas bearing (RSSGB) system. The analytical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, quasi-periodic, and chaotic responses of the rotor center and the journal center. Furthermore, the results reveal the changes which take place in the dynamic behavior of the bearing system as the rotor mass and bearing number are increased. The current analytical results are found to be in good agreement with those of other numerical methods. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of RSSGB systems.  相似文献   

7.
Kai Becker  Wolfgang Seemann 《PAMM》2016,16(1):263-264
Improving the dynamic behaviour of rotor systems in journal bearings represents an ongoing topic of research. The pressure distribution within journal bearings is described by the Reynolds equation, whereby unwanted oscillations can be caused by the fluid-solid interaction within the bearings. An approach of a two-lobe bearing with time-varying geometry is suggested to suppress or at least to reduce occurring oscillations. In order to systematically analyse the system, a spectral reduction is performed, allowing to handle also quasi-periodic behaviour by means of numerical continuation algorithms. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
非线性转子系统稳定性量化分析方法   总被引:4,自引:0,他引:4  
转子轴承系统是一类多自由度非线性动力系统,广泛应用于工程实际.设计观念和维修体制的变革提出了稳定性量化分析的要求.本文利用轨线保稳降维方法提出了转子系统稳定性的量化分析方法.首先,对高维非线性非自治转子系统进行数值积分,将n维空间的轨线映射为一系列一维的映象轨线,并将各自由度的运动方程中除该自由度外的所有状态变量用积分结果代换,得到n个互相解耦,含有多个时变参数的单自由度方程.然后,在一维观察空间的外力位移扩展相平面上定义了动态中心点,研究转子系统中常见的几种运动的动态中心点动能差序列的特点,给出了上述典型运动形式的轨线稳定裕度的定量评估指标,应用灵敏度分析技术快速有效地预测周期运动的倍周期分岔点和Hopf分岔点.以一个具有非线性支承的滑动轴承柔性转子模型为例,证明了该方法的有效性.  相似文献   

9.
This paper presents the non-linear dynamic analysis of a flexible rotor having unbalanced and supported by ball bearings. The rolling element bearings are modeled as two degree of freedom elements where the kinematics of the rolling elements are taken into account, as well as the internal clearance and the Hertz contact non-linearity. In order to calculate the periodic response of this non-linear system, the harmonic balance method is used. This method is implemented with an exact condensation strategy to reduce the computational time. Moreover, the stability of the non-linear system is analyzed in the frequency-domain by a method based on a perturbation applied to the known harmonic solution in the time domain.  相似文献   

10.
This study performs a dynamic analysis of the rub-impact rotor supported by two couple stress fluid film journal bearings. The strong nonlinear couple stress fluid film force, nonlinear rub-impact force and nonlinear suspension (hard spring) are presented and coupled together in this study. The displacements in the horizontal and vertical directions are considered for various non-dimensional speed ratios. The numerical results show that the dynamic behaviors of the system vary with the dimensionless speed ratios, the dimensionless unbalance parameters and the dimensionless parameter, l. Inclusive of the periodic, sub-harmonic, quasi-periodic and chaotic motions are found in this analysis. The results of this study contribute to a further understanding of the nonlinear dynamics of a rotor-bearing system considering rub-impact force existing between rotor and stator, nonlinear couple stress fluid film force and nonlinear suspension. We also prove that couple stress fluid used to be lubricant do improve dynamics of rotor-bearing system.  相似文献   

11.
We investigate complex dynamics occurring in a non-smooth model of a Jeffcott rotor with a bearing clearance. A bifurcation analysis of the rotor system is carried out by means of the software TC-HAT [25], a toolbox of AUTO 97 [6] allowing path-following and detection of bifurcations of periodic trajectories of non-smooth dynamical systems. The study reveals a rich variety of dynamics, which includes grazing-induced fold and period-doubling bifurcations, as well as hysteresis loops produced by a cusp singularity. Furthermore, an analytical expression predicting grazing incidences is derived.  相似文献   

12.
In the present paper, the non-linear dynamic analysis of a flexible rotor with a rigid disk under unbalance excitation mounted on porous oil journal bearings at the two ends is carried out. The system equation of motion is obtained by finite element formulation of Timoshenko beam and the disk. The non-linear oil-film forces are calculated from the solution of the modified Reynolds equation simultaneously with Darcy’s equation. The system equation of motion is then solved by the Wilson-θ method. Bifurcation diagrams, Poincaré maps, time response, journal trajectories, FFT-spectrum, etc. are obtained to study the non-linear dynamics of the rotor-bearing system. The effect of various non-dimensional rotor-bearing parameters on the bifurcation characteristics of the system is studied. It is shown that the system undergoes Hopf bifurcation as the speed increases. Further, slenderness ratio, material properties of the rotor, ratio of disk mass to shaft mass and permeability of the porous bush are shown to have profound effect on the bifurcation characteristics of the rotor-bearing system.  相似文献   

13.
Aydin Boyaci  Wolfgang Seemann  Carsten Proppe 《PAMM》2007,7(1):4050005-4050006
Today, in high speed applications the rotors are commonly supported by hydrodynamic journal bearings. One typical configuration of journal bearings incorporated in automotive turbochargers is the floating ring bearing. Rotors supported by floating ring bearings have many advantages, regarding costs and power consumption for example. However, they might become unstable with increasing speed of rotation. At the onset of instability both the perfectly balanced and unbalanced rotor undergo self-excited vibrations which could cause the mechanical breakdown of the system. The “oil whip”-phenomenon, very well known from the investigations of the plain journal bearing occurs here in a different form. At the stability limit the rotor begins either oscillating with about the half of the ring speed or the half of the ring speed plus the half of the journal speed depending on the system parameters. For this reason a rotor-floating ring bearing model is presented showing the mentioned characteristics. By applying the nonlinear equations of motion the limit cycles of the system are determined and its loss of stability is investigated. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This work is devoted to an existence result of a transient lubrication problem with a time dependent velocity and in the presence of cavitation which is modeled by the Elrod–Adams method. The existence of a solution is based on the time semi-discretization method which yields to a sequence of a second kind variational inequalities. We also give some numerical results for a journal bearing system.  相似文献   

15.
本文从微极流体场方程出发,在润滑层的通常假设下,把它化简为两个独立的常微分方程组,并求得速度、微转动角速度的解析表达式.推导了微极流体润滑的雷诺方程,把它应用于有限长径向轴承的求解.通过数值计算得到了微极效应对各种动力参数、几何参数下轴承的压力分布、承载力、流量系数和摩擦系数的影响,并析了它的实际意义,使微极流体理论应用到工程问题又接近了一步.  相似文献   

16.
Jan Vimmr 《PAMM》2004,4(1):454-455
This contribution is devoted to the mathematical modelling of a compressible viscous fluid flow through a 2‐D model of the male rotor‐housing gap in screw machines. Numerical solution of the nonlinear conservative system of the compressible Navier‐Stokes equations is obtained by means of the cell‐centred finite volume formulation of the explicit two‐step TVD MacCormack scheme proposed by Causon on a structured quadrilateral grid using the own developed numerical code. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
To study the behavior of the high speed spindle air bearing (HSSAB) system, we conduct the research by means of a hybrid numerical method which combines the differential transformation method and the finite difference method in this paper. According to the results of the research, the flexible rotor center is found to include a complex dynamic behavior that comprises periodic, sub-harmonic and quasi-periodic responses. In addition, as the rotor mass and the bearing number are increased, there will be some changes taking place in the dynamic behavior of the bearing system. The results are proven to have no conflict with those of the other numerical methods, which enables an effective means in gaining insights into the nonlinear dynamics of HSSAB systems.  相似文献   

18.
19.
This study presents numerical work investigating the dynamic responses of a flexible rotor supported by porous journal bearings. Both porous and non-porous bearing types are taken into consideration in this study. The rotating speed ratios and imbalance parameters are also presented and proved to be important control parameters. Many non-periodic responses to chaotic and quasi-periodic motions are found, too. From the bifurcation diagrams in this paper, it is also evidenced that the vibration behaviors would be improved by porous bearings. The modeling result obtained here can be employed to predict the dynamics of bearing–rotor systems, and undesirable behavior of the rotor and bearing orbits can be avoided. Also, this could help engineers and researchers in designing and studying bearing–rotor systems or some turbo-machinery in the future.  相似文献   

20.
To increase the hydrodynamic performance in different machine elements, as e.g. journal bearings and thrust bearings, during lubrication it is important to understand the influence of surface roughness. In this connection one encounters homogenization of the incompressible Reynolds equation, where the roughness of the lubricated surface is assumed to be periodic. This problem has recently been studied in more engineering-oriented papers by using the formal method of multiple scale expansion. In this paper, we rigorously prove both homogenization and corrector results by using two-scale convergence, which may be regarded as a justification of the formal multiple scale expansion method described above. Moreover, some numerical illustrations and results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号