首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本试验利用焓差实验室构建空调器实际使用环境,对相同条件下的定频、变频空调器的性能进行对比试验研究。试验数据表明:在室内温度27℃、设定温度相等的条件下,室外温度从29℃到41℃每增加3℃:(1)定频空调器制冷量平均降低约1.64%,最大可降低2.2%,变频空调器制冷量平均降低约1.3%,最大降低1.87%,变频空调器受室外温度影响较小,制冷效果更加稳定;(2)定频、变频空调器输入功率平均增加2.55%和4.16%,输入功率最大增加率分别为4.34%和7.74%,室外温度对变频空调器输入功率影响较大;(3)定、变频机运行过程中耗电量相同时的时间将延后38.3%,变频机需要更长的时间才能体现出节能优势。  相似文献   

2.
在焓差实验室中模拟家用空调器的实际运行环境,相同条件下对比研究相同制冷量的定频和变频空调器的节能舒适特性。结果表明:相同条件下定频空调器能使室内更早的达到设定温度,当空调器设定温度16℃,室外温度35℃时,定频和变频空调器的耗电量达到相同的时间为11h,室外温度为40℃时,定频和变频空调器的耗电量达到相同的时间为6.3h,室外温度越高,定频和变频空调器耗电量相同的时间越提前,变频空调器需要更长的时间才能体现出节能优势;室外温度35℃时,运行变频和定频空调器,室内不同高度之间的温差分别在0.2℃~0.5℃和0.7℃~1℃,室内温度波动周期分别为2.4h和0.25h,变频空调器温差低于定频空调器,且波动周期大,室内温度变化缓慢,舒适性优于定频空调器。  相似文献   

3.
利用焓差实验室,改变室外环境温度,对空调器性能参数进行测量,并与标准工况下测定值对比,分析了制冷量、能效比、冷凝温度与蒸发温度等数据。实验数据表明,当空调器在制热工况下,将室外温度从额定工况7℃升高至15℃,蒸发温度升高,最高可达到7.1℃,制热量最大可增加20.8%,性能系数最大可提高13.2%;将室外温度从额定工况7℃降低至-1℃,蒸发温度降低,最低可达到-6.2℃,制热量最大减少25.2%,性能系数最大降低17.6%。当空调器在制冷工况下,将室外温度从额定工况35℃升高至43℃,冷凝温度升高,最高可达到61℃,输入功率增加16%,能效比最高降低11%;将室外温度从额定工况35℃降低至27℃,冷凝温度降低,最低可达到47.4℃,输入功率减小15%,能效比最大提高8.7%。  相似文献   

4.
从区域性、变工况条件下空调器性能变化和空调器对室内温度分布的影响三个方面对家用空调器性能的研究现状进行了综述和分析,并对分析方法和试验方法进行了改进。分析方法上引入相对制冷量比率(Relative Refrigerating Capacity Percentage,RRCP)、相对制热量比率(Relative Heating Capacity Percentage,RHCP)、相对功率比率(Relative Power Percentage,RPP)和相对能源消耗比率(Relative Energy Consumption Percentage,RECP),分析空调器实测性能与名义性能参数的关系。并提出室外侧温度保持不变,室内侧空调自由运行,室内由初始温度降至空调设定温度的试验方法,此种方法可以对比分析定频空调和变频空调在相同条件下的耗电量和对室内温度分布的影响。  相似文献   

5.
从区域性、变工况条件下空调器性能变化和空调器对室内温度分布的影响三个方面对家用空调器性能的研究现状进行了综述和分析,并对分析方法和试验方法进行了改进。分析方法上引入相对制冷量比率(Relative Refrigerating Capacity Percentage,RRCP)、相对制热量比率(Relative Heating Capacity Percentage,RHCP)、相对功率比率(Relative Power Percentage,RPP)和相对能源消耗比率(Relative Energy Consumption Percentage,RECP),分析空调器实测性能与名义性能参数的关系。并提出室外侧温度保持不变,室内侧空调自由运行,室内由初始温度降至空调设定温度的试验方法,此种方法可以对比分析定频空调和变频空调在相同条件下的耗电量和对室内温度分布的影响。  相似文献   

6.
变频空调器制冷剂最佳充灌量试验研究   总被引:2,自引:2,他引:0  
建立了变频空调器制冷剂最佳充灌量的数学模型,并通过实验验证了模型的可靠型。分析了在不同频率下,制冷剂充灌量对变频空调器制冷量、功率、EER、过热度、压缩机排气温度、吸气温度的影响及原因。提出了变频空调器制冷系统最佳充灌量的确定原则,以高频时蒸发器出口刚好达到饱和状态,此时蒸发器的过热度为零。  相似文献   

7.
主要针对铜铝复合管在家用空调器室内外机连接管的应用替代铜管进行了试验研究。从力学性能、弯曲性能、工艺性、耐压性和耐腐蚀能力几个方面分别对Φ6.35×0.6、Φ9.52×0.7和Φ12.7×0.8的三种型号铜铝复合管连接管进行性能试验。结果表明:三种型号的铜铝复合管连接管延伸率都大于40%,不低于铜管的延伸率,抗拉强度在150~180MPa之间具有良好的弯曲性能,扩口率在65~89%之间,不低于铜管的扩口率(≥50%)。三种规格的铜铝复合管安全承受压力均大于常用制冷剂R22和R410a所要求的耐压强度。经过500h的盐雾实验后,压力测试焊接点无泄漏。最大承受压力超过15MPa,满足空调室内外连接管的使用要求。同时将三种规格的铜铝复合管接入空调器在焓差实验室进行性能测试,表明:与原机型铜连接管相比,使用铜铝复合管连接管的空调器制热量、制冷量和能效比的变化低于1%,对空调器的性能基本没有影响。与铜管相比,在相同条件下,可以降低成本23~35%。  相似文献   

8.
本文设计了一款基于热电原理的过冷装置,并将其运用到家用空调系统当中,试验研究了最小制冷、额定制冷和最大制冷三种工况下,热电过冷装置在电压为6、8、10、12和14V工作时,其制冷量和能效比的变化;并对运行过冷装置前后空调器系统的性能进行试验对比。结果表明:三种工况下,热电过冷装置在工作电压为12V时,其制冷量达到最大,为95、85、94W,能效比分别为0.86、0.77、0.85,此时空调器的过冷度分别为2.6、2.4、2℃,COP则分别提高了3.4%、3.7%、4.7%。  相似文献   

9.
以泰安市某办公楼地源热泵系统为研究对象,通过对夏季运行工况的实时监测,得到地源侧出水温度、负荷侧回水温度、机组COP和机组制冷量随室外气温的变化特性。研究结果表明,地源侧出水温度波峰较室外气温波峰滞后22h;机组COP和机组制冷量不仅与室外气温有关,还与空调末端供冷需求有关,在供冷需求相同的情况下,室外气温每升高1℃,机组COP、制冷量升高2.5%;在室外温度相同的情况下,地源侧出水温度每升高1℃,机组COP降低5%。该研究结论为地源热泵空调系统的设计、节能运行提供了必要的参考。  相似文献   

10.
针对现有空气源热泵冷热水机组高温环境运行效果差、效率低、排气温度过高导致停机等问题,设计一套基于准双级压缩循环理论,以R410A为制冷剂的中压补气型空气源热泵冷热水机组。在50℃极端环境温度下,采用中压补气技术,对系统的制冷性能进行实验研究。结果表明:(1)系统出水温度由10℃增至15℃时,制冷量增加77.28%,EER提高59.02%,系统的制冷量、功率和EER均随出水温度的升高而增加;(2)相较不补气模式,系统排气温度由111.9℃降至106.23℃,制冷量由14.14 kW增至16.05 kW,可有效降低排气温度,提升制冷量,能更好提高系统超高温制冷时的稳定性。  相似文献   

11.
利用中间冷却器将空调与冷柜系统连接构成空调冷柜双联机,其工作原理是利用空调冷凝器出口一部分制冷剂节流来过冷冷柜的冷凝液体。实验研究了冬季工况条件对空调冷柜双联机系统性能的影响。实验结果表明:在固定室内干、湿球温度19℃/11.5℃及冷柜温度条件下,联合运行时,冷柜排气压力及排气温度得到明显下降;随着室外温度的增加空调单位制热量与冷柜单位制冷量耗电量之和逐渐减小,相比于各自单独运行最大节省电量15.4%;在室外温度14℃条件下当制热量与制冷量之比9:1时,单独运行与联合运行耗电量相等。  相似文献   

12.
通过对蒸发式新风机组加干式风机盘管空调系统进行性能研究,改变室外相对湿度及新风量,测试新风机组性能;改变风机盘管供水温度、回风量、水流量,测试风机盘管性能。结果表明,随室外相对湿度的升高,新风机组制冷量、新风机组潜热制冷量均增加,新风机组显热制冷量降低;随新风量的增加,新风机组总制冷量、显热制冷量、潜热制冷量都增加。随风机盘管供水温度的升高,风机盘管总制冷量、显热制冷量、潜热制冷量均降低,其中,最佳供水温度为16℃,既可以保证风机盘管完全处于干工况运行,又可以保证风机盘管最大制冷量;随风机盘管回风量的增加,风机盘管总制冷量、显热制冷量增加,潜热制冷量降低;随风机盘管水流量的增加,风机盘管总制冷量、显热制冷量、潜热制冷量均增加。  相似文献   

13.
针对普通冷库冷藏系统存在排气温度过高、制冷性能较低等问题,研发了一套采用微通道换热器的变频转子压缩机新型冷藏系统,研究系统在不同压缩机转速情况下、采用不同补气形式对系统制冷性能的影响。结果表明:库外温度为32℃时,压缩机转速从3 000 r/min提升至5 000 r/min过程中,分别与不补气系统对比,低压补气系统时排气温度降低了20.54%~22.61%、压缩机功率提高了0.28%~9.19%、制冷量增加了1.15%~4.52%、COP增加了1.41%~3.43%;中压补气系统排气温度降低了18%~20.42%、压缩机功率提高了8.38%~17.29%、制冷量增加了7.86%~18.48%、COP增加了5.08%~8.97%。  相似文献   

14.
《低温与超导》2021,49(4):64-70
为了研究高温级输气量对R410A/R410A变频复叠制冷系统的影响,搭建了变频复叠制冷系统实验台。实验研究了高温级输气量在不同工况下对R410A单一制冷剂变频复叠制冷系统性能的影响规律。实验结果表明:冷凝温度为30℃、蒸发温度为-34~-42℃,高温级压缩机排气温度低于120℃,系统可以安全稳定运行;蒸发温度为-42℃时,高温级输气量从4.44×10~(-4)m~3/s增加到8.82×10~(-4) m~3/s,系统制冷量增加了81.65%,即高温级输气量每增加5.5×10~(-5) m~3/s,制冷量平均增加10.21%;蒸发温度越低,制冷量增长速度越快;系统性能系数COP随着高温级输气量的增加先增大后减小,存在最佳输气量,通过工况及高温级输气量对系统影响的实验结果拟合得到了COP的优化关联式和最佳高温级输气量的优化关联式,为实际应用中高温级输气量的选择提供参考依据。  相似文献   

15.
针对客车空调器在最大运行工况下排气温度过高、系统性能下降、压缩机因过热保护频繁停机等突出问题,提出采用带经济器的低压补气技术,并对系统循环过程进行理论分析与实验研究。结果表明:采用带经济器的低压补气技术可显著降低压缩机排气温度,使系统安全可靠运行,且在较高压缩机转速情况下,其优势更加明显。同时,通过补气比例的合理控制,系统制冷量和COP均有一定幅度地提高。如在室外温度50℃、压缩机转速3000r/min时,压缩机排气温度降低了21.7%,系统制冷量和COP分别提高了3.1%和9.4%。  相似文献   

16.
在结霜质量为3kg的条件下,分别测量了库温为-5℃、-15℃和-20℃时液体冷媒除霜系统的过冷度的变化曲线;并且理论计算了有无过冷度时,系统制冷量的变化。实验表明,制冷剂得到过冷度最大的时刻是除霜开始,最小是除霜结束。过冷度带来的系统制冷量的增加,随蒸发温度的降低而增大。理论计算表明,当库温为-20℃时制冷量增加了43%,库温为0℃时制冷量增加了30%。因此,虽然除霜过程蒸发面积减半,制冷系统仍能输出较大的制冷量,减小库温波动。  相似文献   

17.
窦伟  申江 《低温与超导》2019,47(11):72-76
利用低温风洞实验室研究了过冷度、过热度、蒸发温度、迎面风速对冷库蒸发器性能的影响。结果表明:当环境温度为0℃和-18℃时,过冷度从1℃增加到6℃,制冷量近乎呈线性增长,平均每过冷1℃制冷量分别增加了2.63%、2.72%;过热度从0℃增加到5℃,制冷量随过热度的增大而逐渐减小,平均每过热1℃制冷量分别减小了0.99%、0.38%;迎面风速从3.8 m/s增加到5.8 m/s,制冷量随迎面风速的增大而逐渐增大,平均每增加0.5 m/s的风速制冷量分别增大了1.01%、0.57%。蒸发温度从-29℃增加到-25℃,制冷量近乎呈线性增长,平均每增加1℃蒸发温度制冷量增加了4.6%。  相似文献   

18.
保持环境温度32℃和蒸发温度-7℃不变,分析吸气温度的变化对风冷压缩冷凝机组的性能影响。随着吸气温度的变化,风冷压缩冷凝机组存在特征明显的循环过程。吸气温度每升高1℃,制冷量受过热度增加的推动会显著提高4.1%,输入功率微弱下降0.2%,EER提高4.8%,但排气温度也会升高1%,质量流量会下降0.62%。机组实际运行中推荐吸气温度控制在17℃-19℃,此时制冷量平均达到20.2kW,EER达2.35,排气温度有效控制在85.1℃以下,过热度控制在18.9℃-20.3℃,实现机组的性能最优。  相似文献   

19.
气体轴承斯特林制冷机是相同制冷量下体积最小、重量最轻、效率最高和可靠性最高的制冷机。为了满足高温超导器件等电子器件对斯特林制冷机需求,开展了10W@77K气体轴承斯特林制冷机的性能和环境适应性研究。在此基础上,设计制作了-100~-20℃温区、5W@77K和15W@77K气体轴承斯特林制冷机样机并进行了测试。10W@77K制冷机在输入功率为166.1W时达到10.55W@77K(热端温度30℃),制冷系数达到6.35%,通过了高低温贮存、高低温冲击、高低温工作以及机械振动、机械冲击等环境适应性实验。-100~-20℃温区制冷机在150W输入功率下获得38W@-80℃的制冷量,制冷系数为25.3%。15W@77K制冷机在输入功率为260W时获得了15.6W@77K的制冷量(热端温度35℃),制冷系数为6%。5W@77K制冷机在输入功率为90W时获得了5.1W@77K的制冷量(热端温度35℃),制冷系数为5.67%。该系列气体轴承斯特林制冷机的良好性能和环境适应性使得其可广泛应用于超导接收前端、斯特林低温冰箱和小型液氮系统等场合。  相似文献   

20.
对使用空气动压轴承的升压式空气制冷速冻系统进行了实验研究,分析了压气机进口压力、散热器冷边风量及回热器对系统性能的影响。实验结果表明:增大压气机进口压力和散热器冷边空气流量均可降低涡轮出口温度,提高系统制冷量;系统COP随着压气机进口压力的升高而增大,但是增大幅度逐渐减少;系统增加回热器后,涡轮出口温度最多可降低约67%,系统制冷量和COP最多约可增加45.5%,其中涡轮出口温度最低约可降至-50℃,系统COP最大可达0.7左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号