首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Differential Evolution (DE) is a well known and simple population based probabilistic approach for global optimization. It has reportedly outperformed a few Evolutionary Algorithms (EAs) and other search heuristics like the Particle Swarm Optimization (PSO) when tested over both benchmark and real world problems. But, DE, like other probabilistic optimization algorithms, sometimes behave prematurely in convergence. Therefore, in order to avoid stagnation while keeping a good convergence speed for DE, two modifications are proposed: one is the introduction of a new control parameter, Cognitive Learning Factor (CLF) and the other is dynamic setting of scale factor. Both modifications are proposed in mutation process of DE. Cognitive learning is a powerful mechanism that adjust the current position of individuals by a means of some specified knowledge. The proposed strategy, named as Self Balanced Differential Evolution (SBDE), balances the exploration and exploitation capability of the DE. To prove efficiency and efficacy of SBDE, it is tested over 30 benchmark optimization problems and compared the results with the basic DE and advanced variants of DE namely, SFLSDE, OBDE and jDE. Further, a real-world optimization problem, namely, Spread Spectrum Radar Polly phase Code Design, is solved to show the wide applicability of the SBDE.  相似文献   

2.
Differential evolution for sequencing and scheduling optimization   总被引:2,自引:0,他引:2  
This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial optimization problems with discrete decision variables is still unusual. A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems. Extended comparisons with the well-known random-keys encoding scheme showed a substantially higher performance for the proposed. Furthermore, a simple slight modification in the acceptance rule of the original DE algorithm is introduced resulting to a more robust optimizer over discrete spaces than the original DE.  相似文献   

3.
The classical Differential Evolution (DE) algorithm, one of population-based Evolutionary Computation methods, proved to be a successful approach for relatively simple problems, but does not perform well for difficult multi-dimensional non-convex functions. A number of significant modifications of DE have been proposed in recent years, including very few approaches referring to the idea of distributed Evolutionary Algorithms. The present paper presents a new algorithm to improve optimization performance, namely DE with Separated Groups (DE-SG), which distributes population into small groups, defines rules of exchange of information and individuals between the groups and uses two different strategies to keep balance between exploration and exploitation capabilities. The performance of DE-SG is compared to that of eight algorithms belonging to the class of Evolutionary Strategies (Covariance Matrix Adaptation ES), Particle Swarm Optimization (Comprehensive Learning PSO and Efficient Population Utilization Strategy PSO), Differential Evolution (Distributed DE with explorative-exploitative population families, Self-adaptive DE, DE with global and local neighbours and Grouping Differential Evolution) and multi-algorithms (AMALGAM). The comparison is carried out for a set of 10-, 30- and 50-dimensional rotated test problems of varying difficulty, including 10- and 30-dimensional composition functions from CEC2005. Although slow for simple functions, the proposed DE-SG algorithm achieves a great success rate for more difficult 30- and 50-dimensional problems.  相似文献   

4.
改进种群多样性的双变异差分进化算法   总被引:1,自引:0,他引:1  
差分进化算法(DE)是一种基于种群的启发式随机搜索技术,对于解决连续性优化问题具有较强的鲁棒性.然而传统差分进化算法存在种群多样性和收敛速度之间的矛盾,一种改进种群多样性的双变异差分进化算法(DADE),通过引入BFS-best机制(基于排序的可行解选取递减策略)改进变异算子"DE/current-to-best",将其与DE/rand/1构成双变异策略来改善DE算法中种群多样性减少的问题.同时,每个个体的控制参数基于排序自适应更新.最后,利用多个CEC2013标准测试函数对改进算法进行测试,实验结果表明,改进后的算法能有效改善种群多样性,较好地提高了算法的全局收敛能力和收敛速度.  相似文献   

5.
This paper proposes a new co-swarm PSO (CSHPSO) for constrained optimization problems, which is obtained by hybridizing the recently proposed shrinking hypersphere PSO (SHPSO) with the differential evolution (DE) approach. The total swarm is subdivided into two sub swarms in such a way that the first sub swarms uses SHPSO and second sub swarms uses DE. Experiments are performed on a state-of-the-art problems proposed in IEEE CEC 2006. The results of the CSHPSO is compared with SHPSO and DE in a variety of fashions. A statistical approach is applied to provide the significance of the numerical experiments. In order to further test the efficacy of the proposed CSHPSO, an economic dispatch (ED) problem with valve points effects for 40 generating units is solved. The results of the problem using CSHPSO is compared with SHPSO, DE and the existing solutions in the literature. It is concluded that CSHPSO is able to give the minimal cost for the ED problem in comparison with the other algorithms considered. Hence, CSHPSO is a promising new co-swarm PSO which can be used to solve any real constrained optimization problem.  相似文献   

6.
Differential evolution (DE) is a new population-based stochastic optimization, which has difficulties in solving large-scale and multimodal optimization problems. The reason is that the population diversity decreases rapidly, which leads to the failure of the clustered individuals to reproduce better individuals. In order to improve the population diversity of DE, this paper aims to present a superior–inferior (SI) crossover scheme based on DE. Specifically, when population diversity degree is small, the SI crossover is performed to improve the search space of population. Otherwise, the superior–superior crossover is used to enhance its exploitation ability. In order to test the effectiveness of our SI scheme, we combine the SI with adaptive differential evolution (JADE), which is a recently developed DE variant for numerical optimization. In addition, the theoretical analysis of SI scheme is provided to show how the population’s diversity can be improved. In order to make the selection of parameters in our scheme more intelligently, a self-adaptive SI crossover scheme is proposed. Finally, comparative comprehensive experiments are given to illustrate the advantages of our proposed method over various DEs on a suite of 24 numerical optimization problems.  相似文献   

7.
为提高已有多目标进化算法在求解复杂多目标优化问题上的收敛性和解集分布性,提出一种基于种群自适应调整的多目标差分进化算法。该算法设计一个种群扩增策略,它在决策空间生成一些新个体帮助搜索更优的非支配解;设计了一个种群收缩策略,它依据对非支配解集的贡献程度淘汰较差的个体以减少计算负荷,并预留一些空间给新的带有种群多样性的扰动个体;引入精英学习策略,防止算法陷入局部收敛。通过典型的多目标优化函数对算法进行测试验证,结果表明所提算法相对于其他算法具有明显的优势,其性能优越,能够在保证良好收敛性的同时,使获得的Pareto最优解集具有更均匀的分布性和更广的覆盖范围,尤其适合于高维复杂多目标优化问题的求解。  相似文献   

8.
Differential Evolution (DE) is a well known and simple population based probabilistic approach for global optimization. It has reportedly outperformed a few Evolutionary Algorithms and other search heuristics like Particle Swarm Optimization when tested over both benchmark and real world problems. But, DE, like other probabilistic optimization algorithms, sometimes exhibits premature convergence and stagnates at suboptimal point. In order to avoid stagnation behavior while maintaining a good convergence speed, a new position update process is introduced, named fitness based position update process in DE. In the proposed strategy, position of the solutions are updated in two phases. In the first phase all the solutions update their positions using the basic DE and in the second phase, all the solutions update their positions based on their fitness. In this way, a better solution participates more times in the position update process. The position update equation is inspired from the Artificial Bee Colony algorithm. The proposed strategy is named as Fitness Based Differential Evolution ( $FBDE$ ). To prove efficiency and efficacy of $FBDE$ , it is tested over 22 benchmark optimization problems. A comparative analysis has also been carried out among proposed FBDE, basic DE, Simulated Annealing Differential Evolution and Scale Factor Local Search Differential Evolution. Further, $FBDE$ is also applied to solve a well known electrical engineering problem called Model Order Reduction problem for Single Input Single Output Systems.  相似文献   

9.
This paper presents a hybrid heuristic-triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a Nelder- Mead way, while the simplices used in TE is 1 or 2 dimensional. The proposed algorithm is very easy to use and efficient for global optimization problems with continuous variables. Moreover, it requires only one (explicit) control parameter. Numerical results show that the new algorithm is comparable with DE for low dimensional problems but it outperforms DE for high dimensional problems.  相似文献   

10.
Differential evolution (DE) is a well known and simple population based probabilistic approach for global optimization over continuous spaces. It has reportedly outperformed a few evolutionary algorithms and other search heuristics like the particle swarm optimization when tested over both benchmark and real world problems. DE, like other probabilistic optimization algorithms, has inherent drawback of premature convergence and stagnation. Therefore, in order to find a trade-off between exploration and exploitation capability of DE algorithm, a new parameter namely, cognitive learning factor (CLF) is introduced in the mutation process. Cognitive learning is a powerful mechanism that adjust the current position of individuals by the means of some specified knowledge (previous experience of individuals). The proposed strategy is named as cognitive learning in differential evolution (CLDE). To prove the efficiency of various approaches of CLF in DE,?CLDE is tested over 25 benchmark problems. Further, to establish the wide applicability of CLF,?CLDE is applied to two advanced DE variants. CLDE is also applied to solve a well known electrical engineering problem called model order reduction problem for single input single output systems.  相似文献   

11.
The increasing demand for high reliability, safety and availability of technical systems calls for innovative maintenance strategies. The use of prognostic health management (PHM) approach where maintenance action is taken based on current and future health state of a component or system is rapidly gaining popularity in the maintenance industry. Multiclass support vector machines (MC-SVM) has been identified as a promising algorithm in PHM applications due to its high classification accuracy. However, it requires parameter tuning for each application, with the objective of minimizing the classification error. This is a single objective optimization problem which requires the use of optimization algorithms that are capable of exhaustively searching for the global optimum parameters. This work proposes the use of hybrid differential evolution (DE) and particle swarm optimization (PSO) in optimally tuning the MC-SVM parameters. DE identifies the search limit of the parameters while PSO finds the global optimum within the search limit. The feasibility of the approach is verified using bearing run-to-failure data and the results show that the proposed method significantly increases health state classification accuracy. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Differential Evolution (DE) is a widely used successful evolutionary algorithm (EA) based on a population of individuals, which is especially well suited to solve problems that have non-linear, multimodal cost functions. However, for a given population, the set of possible new populations is finite and a true subset of the cost function domain. Furthermore, the update formula of DE does not use any information about the fitness of the population. This paper presents a novel extension of DE called Randomized and Rank-based Differential Evolution (R2DE) and its self-adaptive version SAR2DE to improve robustness and global convergence speed on multimodal problems by introducing two multiplicative terms in the DE update formula. The first term is based on a random variate of a Cauchy distribution, which leads to a randomization. The second term is based on ranking of individuals, so that R2DE exploits additional information provided by the population fitness. In extensive experiments conducted with a wide range of complexity settings, we show that the proposed heuristics lead to an overall improvement in robustness and speed of convergence compared to several global optimization techniques, including DE, Opposition based Differential Evolution (ODE), DE with Random Scale Factor (DERSF) and the self-adaptive Cauchy distribution based DE (NSDE).  相似文献   

13.
In the present study, a modified variant of Differential Evolution (DE) algorithm for solving multi-objective optimization problems is presented. The proposed algorithm, named Multi-Objective Differential Evolution Algorithm (MODEA) utilizes the advantages of Opposition-Based Learning for generating an initial population of potential candidates and the concept of random localization in mutation step. Finally, it introduces a new selection mechanism for generating a well distributed Pareto optimal front. The performance of proposed algorithm is investigated on a set of nine bi-objective and five tri-objective benchmark test functions and the results are compared with some recently modified versions of DE for MOPs and some other Multi Objective Evolutionary Algorithms (MOEAs). The empirical analysis of the numerical results shows the efficiency of the proposed algorithm.  相似文献   

14.
A novel memetic computing optimization algorithms, i.e. an adaptive variable space differential evolution algorithm (AVSDE), is proposed to improve the global optimization performance. AVSDE guides most individuals search in adaptive variable space (AVS) and employs adaptive mutation and adaptive control parameter. In AVSDE, AVS is determined by population global distribution information, and DE’s operators depend on the local information of the distance and direction. The performance of AVSDE is improved by integrating the global information with the local information. In addition, different mutation strategies are selected according to the evolution stage and random probability to balance AVSDE’s exploration and exploitation abilities, and adaptive control parameter is used to further enhance the performance of AVSDE. 19 scalable benchmark functions are employed to demonstrate the performance of AVSDE. Comparing with two well-tuned conventional DE and several state $-$ of-the $-$ art parameter adaptive DE variants, the whole performance of AVSDE is the best. Finally, two experiments are conducted to analyze the effect of the key parameters on AVSDE’s performance, and the optimal parameters are obtained.  相似文献   

15.
This paper presents a novel parallel Differential Evolution (DE) algorithm with local search for solving function optimization problems, utilizing graphics hardware acceleration. As a population-based meta-heuristic, DE was originally designed for continuous function optimization. Graphics Processing Units (GPU) computing is an emerging desktop parallel computing technology that is becoming popular with its wide availability in many personal computers. In this paper, the classical DE was adapted in the data-parallel CPU-GPU heterogeneous computing platform featuring Single Instruction-Multiple Thread (SIMT) execution. The global optimal search of the DE was enhanced by the classical local Pattern Search (PS) method. The hybrid DE–PS method was implemented in the GPU environment and compared to a similar implementation in the common computing environment with a Central Processing Unit (CPU). Computational results indicate that the GPU-accelerated SIMT-DE-PS method is orders of magnitude faster than the corresponding CPU implementation. The main contribution of this paper is the parallelization analysis and performance analysis of the hybrid DE–PS with GPU acceleration. The research results demonstrate a promising direction for high speed optimization with desktop parallel computing on a personal computer.  相似文献   

16.
Differential evolution (DE) is generally considered as a reliable, accurate, robust and fast optimization technique. DE has been successfully applied to solve a wide range of numerical optimization problems. However, the user is required to set the values of the control parameters of DE for each problem. Such parameter tuning is a time consuming task. In this paper, a self-adaptive DE (SDE) algorithm which eliminates the need for manual tuning of control parameters is empirically analyzed. The performance of SDE is investigated and compared with other well-known approaches. The experiments conducted show that SDE generally outperform other DE algorithms in all the benchmark functions. Moreover, the performance of SDE using the ring neighborhood topology is investigated.  相似文献   

17.
We both propose and test an implicit strategy that is based on changing the search space from points to directions, which in combination with the Differential Evolution (DE) algorithm, is easily implemented for solving boundary optimization of a generic continuous function. In particular, we see that the DE method can be efficiently implemented to find solutions on the boundary of a convex and bounded feasible set resulting when the constraints are bounds on the variables, linear inequalities and quadratic convex inequalities. The computational results are performed on different classes of boundary minimization problems. The proposed technique is compared with the Generalized Differential Evolution method.  相似文献   

18.
Differential evolution is a novel evolutionary approach capable of handling non-differentiable, nonlinear and multimodal objective functions. It has been consistently ranked as one of the best search algorithm for solving global optimization problems in several case studies. In the present study we propose five new mutation schemes for the basic DE algorithm. The corresponding versions are termed as MDE1, MDE2, MDE3, MDE4 and MDE5. These new schemes make use of the absolute weighted difference between the two points and instead of using a fixed scaling factor F, use a scaling factor following the Laplace distribution. The performance of the proposed schemes is validated empirically on a suit of ten benchmark problems having box constraints. Numerical analysis of results shows that the proposed schemes improves the convergence rate of the DE algorithm and also maintains the quality of solution. Efficiency of the proposed schemes is further validated by applying it to a real life electrical engineering problem dealing with the optimization of directional over-current relay settings. It is a highly constrained nonlinear optimization problem. A constraint handling mechanism based on repair methods is used for handling the constraints. Once again the simulation results show the compatibility of the proposed schemes for solving the real life problem.  相似文献   

19.
Although different kinds of evolutionary algorithms (EAs) have been designed and achieved great success on many optimization problems, they are usually limited to some small-scale problems, e.g. with less than 100 decision variables, which may be quite small comparing to the requirements of real-world applications. Therefore, scaling EAs to large size problems have attracted more and more interest. Conventional EAs mimic the seemingly random natural processes by which species evolve. These evolution processes are slow or inefficient. Now, genetic engineering has enabled man to increase both the yields and quality of some crops fast by modifying some part of their genome precisely. In this paper, inspired by the ideas of the genetic engineering, we designed a local selection operator by decomposing the high-dimensional problem into some subcomponents and assigning a local fitness function to evaluate each subcomponent. Then a new differential evolution (DE) is proposed by inserting the local selection operator into the framework of DE. Numerical experiments were carried out to evaluate the performance of the new algorithm on a large number of benchmark functions. The results show that the new algorithm is effective and efficient for high-dimensional optimization.  相似文献   

20.
Scale factor local search in differential evolution   总被引:8,自引:0,他引:8  
This paper proposes the scale factor local search differential evolution (SFLSDE). The SFLSDE is a differential evolution (DE) based memetic algorithm which employs, within a self-adaptive scheme, two local search algorithms. These local search algorithms aim at detecting a value of the scale factor corresponding to an offspring with a high performance, while the generation is executed. The local search algorithms thus assist in the global search and generate offspring with high performance which are subsequently supposed to promote the generation of enhanced solutions within the evolutionary framework. Despite its simplicity, the proposed algorithm seems to have very good performance on various test problems. Numerical results are shown in order to justify the use of a double local search instead of a single search. In addition, the SFLSDE has been compared with a standard DE and three other modern DE based metaheuristic for a large and varied set of test problems. Numerical results are given for relatively low and high dimensional cases. A statistical analysis of the optimization results has been included in order to compare the results in terms of final solution detected and convergence speed. The efficiency of the proposed algorithm seems to be very high especially for large scale problems and complex fitness landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号