首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
The purpose of the work is the thermodynamics-based modelling of the polarisation and the deformation microstructure in the ferroelectric single crystal with the help of a laminate-based approach. The incremental variational-based rate-dependent macroscopic model for dissipative ferroelectric material [1] and the laminate-based microscopic model [2] established in the literature are taken as basis and shall be further extended to a single crystal laminate structure dependent on the loading frequency based on the coupled electromechanical framework taking the effect of polarisation into account. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This contribution focuses on the sequential laminate-based modelling approach for the numerical simulation of the complex electromechanical material behaviour of ferroelectric single crystals. The construction of engineered domain configurations by using the method of sequential lamination in order to study the domain evolution and polarisation switching in ferroelectric single crystals has recently been carried out in the works of [1–4]. By fulfilling the kinematic and polarisation compatibility conditions between the domain structures in a crystal, the proposed laminate-based formulation is governed by an energy-enthalpy function and by a dissipation potential. The mixed energy-enthalpy, written in terms of the total strains, electric field and a set of internal variables, here the multi-rank laminate volume fractions, governs the dissipative electromechanical response of the ferroelectric crystal, whereas the rate-dependent dissipation potential formulated in terms of the flux of the internal variables describes the time-dependent evolution of the multi-rank laminate volume fractions, subjected to inequality constraints. The model reproduces experimentally observed hysteresis and butterfly curves, characteristic for single crystal ferroelectric materials, when subjected to homogeneous electromechanical loading conditions. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this work a tetragonal material model for ferroelectric materials including a microscopically motivated switching criterion is presented. The resulting formulation is able to describe ferroelectric switching effects on a microscopic scale under consideration of the natural tetragonal structure of the ferroelectric material. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
A condensed model for ferroelectric solids with tetragonal unit cells is presented. The approach is microelectromechanically and physically motivated, considering discrete switching processes on the level of unit cells and quasi-continuous evolution of inelastic fields on the domain wall level. To calculate multiple grain interactions an interaction tensor is introduced. Hysteresis loops are simulated for pure electric and electromechanical loading, demonstrating e.g. the influence of a compressive preload on the poling process and interaction between statistically arranged crystallits. The residual stresses and the corresponding principle stresses are used to simulate fatigue damage in ferroelectric materials. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The contribution adresses the simulation of ferroelectric matrials in the framework of the Piezoresponse Force Microscopy (PFM). Based on the PFM, ferroelectric domain structures can be analyzed in great detail by measuring the electrically induced mechanical deformations of the surface of a ferroelectric. We employ a flexible continuum-mechanical model based on the phase-field method in order to analyze the behavior of ferroelectric microstructures numerically. Since ferroelectric materials are often highly anisotropic, the phase-field formulation will account for transversely isotropic symmetry. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Experimental analysis of ferroelectric composites with a viscoelastic and dielectric relaxation matrix is carried out, and the electromechanical coupling behavior of the ferroelectric composites is calculated by means of the constitutive model proposed in this paper. Comparisons between the experimental results and the calculations show that the constitutive model can reflect the electromechanical coupling behavior of the ferroelectric composites. The analysis indicates that the effect of viscoelasticity and dielectric relaxation of the matrix on the electromechanical coupling behavior of ferroelectric composites cannot be neglected.  相似文献   

8.
Based on micromechanics and Laplace transformation, a constitutive model of ferroelectric composites with a linear elastic and linear dielectric matrix is developed and extended to the ferroelectric composites with a viscoelastic and dielectric relaxation matrix. Thus, a constitutive model for ferroelectric composites with a viscoelastic and dielectric relaxation matrix has been set up Project supported by the National Natural Science Foundation of China (Grant No. 19891180).  相似文献   

9.
Sven Klinkel  Konrad Linnemann 《PAMM》2008,8(1):10507-10508
The contribution is concerned with a thermodynamic consistent constitutive model for magnetostrictive materials and ferroelectric ceramics. It captures the nonlinear phenomenological behavior which is described by hysteresis effects. Magnetostrictive alloys and ferroelectric ceramics belong to the multifunctional materials. In recent years these materials have become widely–used in actor and sensor applications. They characterize an inherent coupling between deformation and magnetic or electric field. Due to the similarities of the coupled differential equations a uniform approach is applied for both phenomena. The presented three–dimensional material model is thermodynamically motivated. It is based on the definition of a specific free energy function and a switching criterion. Furthermore an additive split of strain and the magnetic or electric field in a reversible and an irreversible part is suggested. The irreversible quantities serve as internal variables, which is analog to plasticity theory. A one–to–one–relation between the two internal variables provides conservation of volume for the irreversible strains. The presented material model can approximate the ferromagnetic or ferroelectric hysteresis curve and the related butterfly hysteresis. Furthermore an extended approach for ferrimagnetic behavior, which occurs in magnetostrictive materials, is presented. Some numerical simulations demonstrate the capability of the presented model. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Daniele Rosato  Christian Miehe 《PAMM》2008,8(1):10459-10460
This paper is concerned with macroscopic continuous and discrete variational formulations for domain switching effects at small strains, which occur in ferroelectric ceramics. The developed new three–dimensional model is thermodynamically–consistent and determined by two scalar–valued functions: the energy storage function (Helmholtz free energy) and the dissipation function, which is in particular rate–dependent. The constitutive model successfully reproduces the ferroelastic and the ferroelectric hysteresis as well as the butterfly hysteresis for ferroelectric ceramics. The rate–dependent character of the dissipation function allows us also to reproduce the experimentally observed rate dependency of the above mentioned hysteresis phenomena. An important aspect is the numerical implementation of the coupled problem. The discretization of the two–field problem appears, as a consequence of the proposed incremental variational principle, in a symmetric format. The performance of the proposed methods is demonstrated by means of a benchmark problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
主要基于细观力学方法揭示了畴极化转动对多晶铁电陶瓷的各向异性断裂特性的平均影响。首先,用Eshelby-Mori-Tanaka理论和统计模型分析了无穷大铁电材料体中一椭球夹杂的内、外电弹性场,得到畴极化转动对电弹性场的平均影响;其次,推导了等效多晶铁电陶瓷中含一钱币状裂纹的裂纹扩展力(能量释放率)Gext,并用它估计了畴极化转动对多晶铁电陶瓷断裂特性的影响。对BaTiO3陶瓷中裂纹扩展力的计算结果表明,对多晶铁电材料断裂特性分析必须考虑畴极化转动的影响。计算结果得出了与实验相一致的结论:在受较小的力时,外加电场对裂纹扩展产生较大的影响,而且在某种程度上能促进了裂纹扩展。  相似文献   

12.
Ferroelectric and piezoelectric materials are becoming a very significant part of smart materials that are used widely as actuators, sensors and most common applications such as vibration control, precision positioning, precision cutting and microelectromechanical systems (MEMS). Piezoceramic materials show nonlinear characteristics when they are under high electromechanical loading. In this study, nonlinear behaviour of tetragonal perovskite type piezoceramic materials is simulated using micromechanical model. In the simulations uni‐axial loading is applied. The calculations which are based on a linear constitutive model, nonlinear domain switching model and a model of probability to switch are performed at each grain. The different domain switching effects (900 or 1800 domain switching for tetragonal perovskite structure) due to energy differences, different probability functions, different statistical random generators and material parameters are analyzed. Finally, simulation results are compared with the data of experiments are giving in literature. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper a damage model for ferroelectric materials is presented. It is implemented in terms of a user element in the commercial FEM-code Abaqus. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. Finite element analysis of a multilayer actuator is performed, showing principal stresses leading to crack initiation and damage of the actuator. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this paper, the theoretical background of a physically based constitutive model is presented. In addition to the nonlinear ferroelectric behavior, the model considers the nonlinear coupling of thermal and electromechanical fields. Results are presented in terms of a simple analytical solution for a single domain configuration. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The present contribution deals with molecular static modelling and the simulation of ferroelectric material hysteresis behaviour. Therefore the core-shell model is implemented in a molecular static algorithm. Moreover the algorithm is implemented as a finite element method for nonlinear trusses. Thereby the computational costs are reduced significantly compared to molecular dynamics. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
H. Romanowski  J. Schrder 《PAMM》2004,4(1):268-269
A characteristic feature of ferroelectric crystals is the appearance of a spontaneous polarisation, where its direction can be reversed by an applied electric field. This quantity, that has a maximum value at high electric‐fields, depends on the loading history of the material. In this paper we discuss a thermodynamic consistent phenomenological model for an assumed transversely isotropic ferroelectric crystal, where the history dependency is modelled by internal variables. The anisotropic behaviour is governed by isotropic tensor functions, depending on a finite set of invariants, that satisfy automatically the symmetry relationships of the considered body. The main goal of this investigation is to capture some characteristics of nonlinear ferroelectrica, such as the polarisation‐electric‐field and the strain‐electric‐field (butterfly) hysteresis loops. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The present contribution deals with the atomistic modelling of ferroelectric barium titanate. In this context a core-shell model is implemented in a Molecular Static algorithm. Furthermore, Coulomb forces are simulated by the Wolf summation method in order to allow for a small cut off radius. We discuss the core-shell model, molecular statics as a finite elements approach and present some numerical results. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Ferroelectric or ferromagnetic materials show an interaction between mechanical deformations and polarization or magnetization. A few multiferroic materials possess both ferroic properties and exhibit a magneto-electric (ME) coupling. These ME properties can be achieved in two-phase composites, which combine ferroelectric and ferromagnetic characteristics. To predict a realistic material behavior and a more precise ME coefficient, the application of suitable material models which describe the nonlinear hysteretic behavior is of particular importance. In the present contribution we focus on the characterization of a nonlinear ferroelectric material behavior, in terms of a 3D Preisach model based on an orientation distribution function. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We consider a state-of-the-art ferroelectric phase-field model arising from the engineering area in recent years, which is mathematically formulated as a coupled elliptic–parabolic differential system. We utilize the maximal parabolic regularity theory to show the local in time well-posedness of the ferroelectric problem in both 2D and 3D spaces, which is sharp in the sense that the local solution is unique and a blow-up criterion is present. The well-posedness result will firstly be proved under some general assumptions. Afterwards we give sufficient geometric and regularity conditions which will guarantee the fulfillment of the imposed assumptions.  相似文献   

20.
Andreas Müller 《PAMM》2009,9(1):401-402
The original Jiles-Atherton model for modeling hysteresis in ferroelectric media relates the magnetization, or likewise the magnetic polarization, and the magnetic field strength. Since discrete dimensional electromechanical systems are usually modeled using the flux formulation the Jiles-Atherton model is not applicable in its original form. In this contribution a reformulation in terms of the magnetic flux density is presented. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号