首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This work compares the wave propagation properties of discontinuous Galerkin (DG) schemes for advection–diffusion problems with respect to the behavior of classical discretizations of the diffusion terms, that is, two versions of the local discontinuous Galerkin (LDG) scheme as well as the BR1 and the BR2 scheme. The analysis highlights a significant difference between the two possible ways to choose the alternating LDG fluxes showing that the variant that is inconsistent with the upwind advective flux is more accurate in case of advection–diffusion discretizations. Furthermore, whereas for the BR1 scheme used within a third order DG scheme on Gauss-Legendre nodes, a higher accuracy for well-resolved problems has previously been observed in the literature, this work shows that higher accuracy of the BR1 discretization only holds for odd orders of the DG scheme. In addition, this higher accuracy is generally lost on Gauss–Legendre–Lobatto nodes.  相似文献   

2.
Sigrun Ortleb 《PAMM》2017,17(1):531-532
In the context of mechanical fluid-structure interaction (FSI) comprising moving or deforming structures, fluid discretizations need to cope with time-dependent fluid domains and resulting grid deformations in addition to the general challenges regarding e.g. boundary layers and turbulent phenomena. Recent approaches in the simulation of compressible turbulent flow are based on so-called split forms of conservation laws to guarantee the preservation of secondary physical quantities such as kinetic energy. For the simulation of turbulent flows, this often leads to a better representation of the kinetic energy spectrum. Initially, kinetic energy preserving(KEP) DG schemes have been constructed on Gauss-Legendre-Lobatto(GLL) nodes containing the interval end points, however, KEP DG schemes based on the classical Gauss-Legendre(GL) nodes are potentially more accurate and may be also more efficient than its GLL variant for certain applications. In this work, the KEP-DG schemes both on GL and GLL nodes are applied to the classical moving piston test case via an ALE formulation on moving fluid grids showing a more accurate frequency representation of the structure displacement in case of GLL nodes. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper we propose a numerical scheme based on finite differences for the numerical solution of nonlinear multi-point boundary-value problems over adjacent domains. In each subdomain the solution is governed by a different equation. The solutions are required to be smooth across the interface nodes. The approach is based on using finite difference approximation of the derivatives at the interface nodes. Smoothness across the interface nodes is imposed to produce an algebraic system of nonlinear equations. A modified multi-dimensional Newton’s method is proposed for solving the nonlinear system. The accuracy of the proposed scheme is validated by examples whose exact solutions are known. The proposed scheme is applied to solve for the velocity profile of fluid flow through multilayer porous media.  相似文献   

4.
In this article we consider the age structured population growth model of marine invertebrates. The problem is a nonlinear coupled system of the age‐density distribution of sessile adults and the abundance of larvae. We propose the semidiscrete and fully‐discrete discontinuous Galerkin schemes to the nonlinear problem. The DG method is well suited to approximate the local behavior of the problem and to easily take the locally refined meshes with hanging nodes adaptively. The simple communication pattern between elements makes the DG method ideal for parallel computation. The global existence of the approximation solution is proved for the nonlinear approximation system by using the broken Sobolev spaces and the Schauder's fixed point theorem, and error estimates are obtained for both the semidiscrete scheme and the fully‐discrete scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
In this paper, we propose an adaptive Filon-type method to approximate oscillatory integrals. By using some S-shaped functions connecting Gauss-Legendre nodes and Filon-type method, the adaptive schemes behave well for small as well as for large frequencies. Adding frequency-dependent nodes can improve the asymptotic order at the same time. Moreover, there exist some complex nodes leading to a higher asymptotic order method approximating to the integral, and the special nodes work in other methods as well. The error can be further decreased by taking extra Chebyshev nodes. The efficiency and accuracy are tested by some experiments.  相似文献   

6.
An association scheme is called skew-symmetric if it has no symmetric adjacency relations other than the diagonal one. In this paper, we investigate 4-class skew-symmetric association schemes. In recent work by the first author it was discovered that their character tables fall into three types. We now determine their intersection matrices. We then determine the character tables for 4-class skew-symmetric pseudocyclic association schemes, the only known examples of which are cyclotomic schemes. As a result, we answer a question raised by S.Y. Song in 1996. We characterize and classify 4-class imprimitive skew-symmetric association schemes. We also prove that none of 2-class Johnson schemes admits a 4-class skew-symmetric fission scheme. Based on three types of character tables above, a short list of feasible parameters is generated.  相似文献   

7.
The rates of convergence of iterative methods with standard preconditioning techniques usually degrade when the skew-symmetric part S of the matrix is relatively large. In this paper, we address the issue of preconditioning matrices with such large skew-symmetric parts. The main idea of the preconditioner is to split the matrix into its symmetric and skew-symmetric parts and to invert the (shifted) skew-symmetric matrix. Successful use of the method requires the solution of a linear system with matrix I+S. An efficient method is developed using the normal equations, preconditioned by an incomplete orthogonal factorization.Numerical experiments on various systems arising in physics show that the reduction in terms of iteration count compensates for the additional work per iteration when compared to standard preconditioners.  相似文献   

8.
High order discontinuous Galerkin (DG) discretization schemes are considered for an advection boundary-value problem on 2-D unstructured grids with arbitrary geometry of grid cells. A number of test cases are developed to study the sensitivity of a high order DG scheme to local grid distortion. It will be demonstrated how to modify the formulation of a DG discretization for the advection equation. Our approach allows one to maintain the required accuracy on distorted grids while using a fewer number of basis functions for the solution approximation in order to save computational resources.  相似文献   

9.
The paper investigates some nonconforming finite elements and nonconforming finite element schemes for solving an advection—diffusion equation. This investigation is aimed at finding new schemes for solving parabolic equations. The study uses a finite element method, variational-difference schemes, and test calculations. Two types of schemes are examined: one is obtained with the help of the Bubnov—Galerkin method from a weak problem determination (nonmonotone scheme), and the other one is a monotone up-stream scheme obtained from an approximate weak problem determination with a special approximation of the skew-symmetric terms.  相似文献   

10.
本文将一种改进的二步迭代算法作为预测,将高斯-勒让德求积公式作为校正,提出了一种求解非线性方程组的具有3p收敛阶的迭代方法.最后给出了一些数值实例,将本文的实验结果与现有的几种迭代方法的实验结果作了比较分析,验证了本文所提出的结果.  相似文献   

11.
We study 5-dimensional Riemannian manifolds that admit an almost contact metric structure. We classify these structures by their intrinsic torsion and review the literature in terms of this scheme. Moreover, we determine necessary and sufficient conditions for the existence of metric connections with vectorial, totally skew-symmetric or traceless cyclic torsion that are compatible with the almost contact metric structure. Finally, we examine explicit examples of almost contact metric 5-manifolds from this perspective.  相似文献   

12.
This article presents a new type of second‐order scheme for solving the system of Euler equations, which combines the Runge‐Kutta discontinuous Galerkin (DG) finite element method and the kinetic flux vector splitting (KFVS) scheme. We first discretize the Euler equations in space with the DG method and then the resulting system from the method‐of‐lines approach will be discretized using a Runge‐Kutta method. Finally, a second‐order KFVS method is used to construct the numerical flux. The proposed scheme preserves the main advantages of the DG finite element method including its flexibility in handling irregular solution domains and in parallelization. The efficiency and effectiveness of the proposed method are illustrated by several numerical examples in one‐ and two‐dimensional spaces. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

13.
We prove that there is a one-to-one correspondence between projective structures defined by torsion-free connections with skew-symmetric Ricci tensor and Veronese webs on a plane. The correspondence is used to characterise the projective structures in terms of second order ODEs.  相似文献   

14.
We are concerned with the efficient implementation of symplectic implicit Runge-Kutta (IRK) methods applied to systems of Hamiltonian ordinary differential equations by means of Newton-like iterations. We pay particular attention to time-symmetric symplectic IRK schemes (such as collocation methods with Gaussian nodes). For an s-stage IRK scheme used to integrate a \(\dim \)-dimensional system of ordinary differential equations, the application of simplified versions of Newton iterations requires solving at each step several linear systems (one per iteration) with the same \(s\dim \times s\dim \) real coefficient matrix. We propose a technique that takes advantage of the symplecticity of the IRK scheme to reduce the cost of methods based on diagonalization of the IRK coefficient matrix. This is achieved by rewriting one step of the method centered at the midpoint on the integration subinterval and observing that the resulting coefficient matrix becomes similar to a skew-symmetric matrix. In addition, we propose a C implementation (based on Newton-like iterations) of Runge-Kutta collocation methods with Gaussian nodes that make use of such a rewriting of the linear system and that takes special care in reducing the effect of round-off errors. We report some numerical experiments that demonstrate the reduced round-off error propagation of our implementation.  相似文献   

15.
We study Nijenhuis structures on Courant algebroids in terms of the canonical Poisson bracket on their symplectic realizations. We prove that the Nijenhuis torsion of a skew-symmetric endomorphism N of a Courant algebroid is skewsymmetric if N 2 is proportional to the identity, and only in this case when the Courant algebroid is irreducible. We derive a necessary and sufficient condition for a skewsymmetric endomorphism to give rise to a deformed Courant structure. In the case of the double of a Lie bialgebroid (A, A*), given an endomorphism N of A that defines a skew-symmetric endomorphism N of the double of A, we prove that the torsion ofN is the sum of the torsion of N and that of the transpose of N.  相似文献   

16.
We present a shifted skew-symmetric iteration method for solving the nonsymmetric positive definite or positive semidefinite linear complementarity problems. This method is based on the symmetric and skew-symmetric splitting of the system matrix, which has been adopted to establish efficient splitting iteration methods for solving the nonsymmetric systems of linear equations. Global convergence of the method is proved, and the corresponding inexact splitting iteration scheme is established and analyzed in detail. Numerical results show that the new methods are feasible and effective for solving large sparse and nonsymmetric linear complementarity problems.  相似文献   

17.
In this paper, we discuss the formulation, stability and validation of a high-order non-dissipative discontinuous Galerkin (DG) method for solving Maxwell’s equations on non-conforming simplex meshes. The proposed method combines a centered approximation for the numerical fluxes at inter element boundaries, with either a second-order or a fourth-order leap-frog time integration scheme. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary-level hanging nodes. The method is proved to be stable and conserves a discrete counterpart of the electromagnetic energy for metallic cavities. Numerical experiments with high-order elements show the potential of the method.  相似文献   

18.
We adapt the spectral viscosity (SV) formulation implemented as a modal filter to a discontinuous Galerkin (DG) method solving hyperbolic conservation laws on triangular grids. The connection between SV and spectral filtering, which is undertaken for the first time in the context of DG methods on unstructured grids, allows to specify conditions on the filter strength regarding time step choice and mesh refinement. A crucial advantage of this novel damping strategy is its low computational cost. We furthermore obtain new error bounds for filtered Dubiner expansions of smooth functions. While high order accuracy with respect to the polynomial degree N is proven for the filtering procedure in this case, an adaptive application is proposed to retain the high spatial approximation order. Although spectral filtering stabilizes the scheme, it leaves weaker oscillations. Therefore, as a postprocessing step, we apply the image processing technique of digital total variation (DTV) filtering in the new context of DG solutions and prove conservativity in the limit for this filtering procedure. Numerical experiments for scalar conservation laws confirm the designed order of accuracy of the DG scheme with adaptive modal filtering for polynomial degrees up to 8 and the viability of spectral and DTV filtering in case of shocks. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

19.
研究线性流形上广义次对称矩阵的左右逆特征值问题及其最佳逼近问题.利用广义次对称矩阵的性质及矩阵的奇异值分解得到问题的通解表达式.同时,给出其有唯一的最佳逼近解以及求最佳逼近解的算法.  相似文献   

20.
提出利用Legendre小波和Gauss-Legendre求积公式求解几种积分区域的三重数值积分如长方体,四面体,圆柱体,圆锥和椭球体.通过某种线性或非线性变换将空间积分区域变换到空间长方体.利用Gauss-Legendre求积公式将三重积分转换成二重积分,然后利用Legendre小波对二重积分进行逼近.数值算例验证了方法的可行性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号