首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The effect of directional reinforcing in generating qualitative changes in the mechanical response of a base neo-Hookean material is examined in the context of homogenous deformation. Single axis reinforcing giving transverse isotropy is the major focus, in which case a standard reinforcing model is characterized by a single constitutive reinforcing parameter. Various qualitative changes in the mechanical response ensue as the reinforcing parameter increases from the zero-value associated with neo-Hookean response. These include (in order): the existence of a limiting contractive stretch for transverse-axis tensile load; loss of monotonicity in off-axis simple shear; loss of monotonicity in on-axis compression; loss of positivity in the stress-shear product in off-axis simple shear; and loss of monotonicity for plane strain in on-axis compression. The qualitative changes in the simple shear response are associated with stretch relaxation in the reinforcing direction due to finite rotation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Stationary kinks (elastostatic shocks) are examined in the context of a base neo-Hookean response augmented with unidirectional reinforcing that is characterized by a single additional constitutive parameter for the additional fiber reinforcing stiffness. Previous work has shown that such a transversely isotropic material can lose ellipticity in plane deformation if the reinforcing is sufficiently large and the fiber direction is sufficiently compressed. Here we show that the same reinforcing levels can give rise to piecewise smooth plane deformations separated by a plane stationary kink. Attention is restricted to deformations in which, on one side of the kink, the load axis is aligned with the fiber axis. Then the fiber stretch on this side of the kink is a natural load parameter. It is found that such a deformation can support a planar kink for a certain range of this load parameter. This range is dependent on the reinforcing parameter, and can even involve fiber extension if the reinforcing is sufficiently large. The set of all deformation states on the other side of the kink is precisely characterized in terms of a one-parameter family of (kink orientation, kink strength)-pairs. The results are interpreted in terms of the associated fiber alignment discontinuity and fiber stretch discontinuity.  相似文献   

3.
Stationary kinks (elastostatic shocks) are examined in the context of a base neo-Hookean response augmented with unidirectional reinforcing that is characterized by a single additional constitutive parameter for the additional fiber reinforcing stiffness. Previous work has shown that such a transversely isotropic material can support stationary kinks in plane deformation if the reinforcing is sufficiently great. If the deformation on one side of the kink involves a load axis aligned with the fiber axis, then the more general plane deformation on the other side of the kink is characterized in terms of a one-parameter family of (kink orientation, kink strength)-pairs. Here, the ellipticity status of the two correlated deformation states is shown to span all four possible ellipticity/nonellipticity permutations. If both deformation states are elliptic, then a suitable intermediate deformation is shown to be nonelliptic. Maximally dissipative quasi-static kink motion is examined and interpreted in terms of kink band broadening in on-axis loading. Such maximally dissipative kinks nucleate only in compression as weak kinks, with subsequent motion converting nonelliptic deformation to elliptic deformation. The associated fiber rotation involves three periods: an initial period of slow rotation, a secondary period of rapid rotation, and a final period of essentially constant orienation.  相似文献   

4.
A class of non-symmetric deformations of a neo-Hookean incompressible nonlinearly elastic sphere are investigated. It is found via the semi-inverse method that, to satisfy the governing three-dimensional equations of equilibrium and the incompressibility constraint, only three special cases of the class of deformation fields are possible. One of these is the trivial solution, one the solution describing radially symmetric deformation, and the other a (non-symmetric, non-homogeneous) deformation describing inflation and stretching. The implications of these results for cavitation phenomena are also discussed. In the course of this work, we also present explicitly the spherical polar coordinate form of the equilibrium equations for the nominal stress tensor for a general hyperelastic solid. These are more complicated than their counterparts for Cauchy stresses due to the mixed bases (both reference and deformed) associated with the nominal (or Piola-Kirchhoff) stress tensor, but more useful in considering general deformation fields. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In this paper we derive necessary and sufficient conditions for strong ellipticity in several classes of anisotropic linearly elastic materials. Our results cover all classes in the rhombic system (nine elasticities), four classes of the tetragonal system (six elasticities) and all classes in the cubic system (three elasticities). As a special case we recover necessary and sufficient conditions for strong ellipticity in transversely isotropic materials. The central result shows that for the rhombic system strong ellipticity restricts some appropriate combinations of elasticities to take values inside a domain whose boundary is the third order algebraic surface defined by x 2+y 2+z 2−2xyz−1=0 situated in the cube , , . For more symmetric situations, the general analysis restricts combinations of elasticities to range inside either a plane domain (for four classes in the tetragonal system) or in an one-dimensional interval (for the hexagonal systems, transverse isotropy and cubic system). The proof involves only the basic statement of the strong ellipticity condition.   相似文献   

6.
The propagation of the energy of nonlinearly elastic plane waves in a Murnaghan material is simulated on a computer. The velocity of energy propagation is found in an explicit form. A procedure of determining the critical values of the time and space coordinates for the given material is described. The resultant plots are discussed and analyzed  相似文献   

7.
The Boussinesq problem, that is, determining the deformation in a hyperelastic half-space due to a point force normal to the boundary, is an important problem of engineering, geomechanics, and other fields to which elasticity theory is often applied. While linear solutions produce useful Greens functions, they also predict infinite displacements and other physically inconsistent results nearby and at the point of application of the load where the most critical and interesting material behavior occurs. To illuminate the deformation due to such a load in the region of interest, asymptotic analysis of the nonlinear Boussinesq problem has been considered in the context of isotropic hyperelasticity. Studies considering transversely isotropic materials have also been broadly used in the linear theory, but have not been treated within the nonlinear framework. In this paper we extend the nonlinearly elastic isotropic analysis to transverse isotropy, producing a more general theory which also better encompasses applications involving layered media. The governing equations for nonlinearly elastic, transversely isotropic solids are derived, conservation laws of elastostatics are invoked, asymptotic forms of the deformation solutions are hypothesized, and the differential equations governing deformation near the point load are determined. The analysis also develops sequences of simple tests to determine if a transversely isotropic material can possibly sustain a finite deflection under the point load. The results are applied to a variety of transversely isotropic materials, and the effects of the anisotropy considered is demonstrated by comparison of the resulting deformation with similar asymptotic solutions in the isotropic theory. Mathematics Subject Classifications (2000) 74B20, 74E10, 74G10, 74G15, 74G70.  相似文献   

8.
The two-dimensional nonlinear ‘membrane’ equations for a plate made of a Saint Venant–Kirchhoff material have been justified by D. Fox, A. Raoult and J.C. Simo (1993) by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of R3, is equivalent to finding the critical points of a functional whose nonlinear part depends on the first fundamental form of the unknown deformed surface. We establish here a local existence result for these equations in the case of the membrane subject to forces parallel to its plane and we give qualitative properties of the solutions found in this fashion in terms of injectivity and of minimization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
For infinite perfectly elastic Mooney materials, nonlinear plane waves are examined in both two and three dimensions. In two dimensions, longitudinal and shear plane waves are examined, while in three dimensions, longitudinal and torsional plane waves are considered. These exact dynamic deformations, applying to the incompressible perfectly elastic Mooney material, can be viewed as extensions of the corresponding static deformations first derived by Adkins [1] and Klingbeil and Shield [2]. Furthermore, the Mooney strain-energy function is the most general material admitting nontrivial dynamic deformations of this type. For two dimensions the determination of plane wave solutions reduces to elementary mathematical analysis, while in three dimensions an integral of the governing system of highly nonlinear ordinary differential equations is determined. In the latter case, solutions corresponding to particular parameter values are shown graphically. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
赵晓华 《力学季刊》2000,21(4):462-469
讨论一对集中力作用下横观各向同性体三维裂纹的瞬态扩展问题,其解答构成三维裂纹瞬态扩展问题的基本解。求解方法是基于积分变换技术,将混合边值问题化为Wiener-Hopf型积分方程,求得了裂纹所在平面应力和位移的封闭形式解。进一步利用Abel定理和Cagniard-de Hoop方法,求得了动态应力强度因子的精确解。最后通过数值结果揭示了横观各向同性材料三维扩展裂纹尖端场的动态特性。  相似文献   

11.
Experimental data for simple tension suggest that there is a power–law kinematic relationship between the stretches for large classes of slightly compressible (or almost incompressible) non-linearly elastic materials that are homogeneous and isotropic. Here we confine attention to a particular constitutive model for such materials that is of generalized Varga type. The corresponding incompressible model has been shown to be particularly tractable analytically. We examine the response of the slightly compressible material to some nonhomogeneous deformations and compare the results with those for the corresponding incompressible model. Thus the effects of slight compressibility for some basic nonhomogeneous deformations are explicitly assessed. The results are fundamental to the analytical modeling of almost incompressible hyperelastic materials and are of importance in the context of finite element methods where slight compressibility is usually introduced to avoid element locking due to the incompressibility constraint. It is also shown that even for slightly compressible materials, the volume change can be significant in certain situations.   相似文献   

12.
An infinite elastic band is compressed along its unbounded direction, giving rise to a continuous family of homogeneous configurations that is parameterized by the compression rate β < 1 (β = 1 when there is no compression). It is assumed that, for some critical value β 0, the compression force as a function of β has a strict local extremum and that the linearized equation around the corresponding homogeneous configuration is strongly elliptic. Under these conditions, there are nearby localized deformations that are asymptotically homogeneous. When the compression force reaches a strict local maximum at β 0, they describe localized thickening and they occur for values of β slightly smaller than β 0. Since the material is supposed to be hyperelastic, homogeneous and isotropic, the localized deformations are not due to localized imperfections. The method follows the one developed by A. Mielke for an elastic band under traction: interpretation of the nonlinear elliptic system as an infinite dimensional dynamical system in which the unbounded direction plays the role of time, its reduction to a center manifold and the existence of a homoclinic solution to the reduced finite dimensional problem in [A. Mielke, Hamiltonian and Lagrangian fiows on center manifolds, Lecture Notes in Mathematics 1489. Springer, Berlin Heidelberg New York, 1991]. The main difference lies in the fact that Agmon's condition does not hold anymore and therefore the linearized problem cannot be analyzed as in Mielke's work.  相似文献   

13.
Similarities of the subharmonic resonance in linear mechanical systems and of the second harmonic of a plane wave in nonlinearly deformable elastic bodies are described  相似文献   

14.
Continuous and integrable solutions and one-to-one relationships between boundary forces and displacements are found through the direct integration of the differential equations of the plane elastic problem for a half-plane with boundary conditions for either forces or displacements or with mixed boundary conditions. The necessary equilibrium conditions for forces and the compatibility conditions for displacements that ensure the correctness of the solutions are formulated  相似文献   

15.
The most general strain energy function that yields a power law relationship between the principal stretches in the simple tension of nonlinear, elastic, homogeneous, compressible, isotropic materials is obtained. The approach taken generalises that used by Blatz and Ko. The strain energy function obtained depends on the choice of two stretch invariants. The forms of the strain energy function for a number of such choices are obtained. Finally, some consequences of the choice of strain energy function on the stress–strain relationship for uniaxial tension are investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Plane nonlinear fluid flows through a porous medium which simulate a sink located at the same distance from the roof and floor of the stratum for two nonlinear flow laws are constructed. The following flow laws are taken: a power law and a law of special form reducing to analytic functions in the hodograph plane.  相似文献   

17.
The dynamic equations of the continual theory of defects are used to study the structure of the waves of a defect field characterized by a defect density tensor and a defect flux tensor in a viscoplastic medium. Relations are obtained that define the passage of defect field waves through an interface between two media. Particular cases of media with rapidly and slowly decaying waves are considered.  相似文献   

18.
采用数学弹性力学的稳定平衡方程并结合富氏积分变换的方法研究了含表面平行裂纹的弹性体在压缩载荷下的表面分层失稳问题。导出了一级显式的精确齐次奇异积分方程组,然后.通过Gauss-Chebyshev积分公式,得到一组齐次代数方程组,从而求出临界压缩载荷。并将结果与经典的材料力学梁板稳定的研究方法所得结果进行了比较,指出经典方法误差太大而不适于求解此问题。最后,利用数学弹性力学解求出的等效弹性支承常数给出一个简单精确的临界压缩载荷计算公式。  相似文献   

19.
A generalized mathematical theory of a double mathematical pendulum with follower force is used to analyze the stability of the vertical equilibrium position of the pendulum with both linear and nonlinear (hard and soft) elastic elements in the critical case of one zero root of the characteristic equation. The influence of the parameters of these elements on the safe and dangerous sections of the stability boundary is demonstrated__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 133–142, April 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号