首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a study of thermal stability of the top spin valve with a structure of seed Ta (Snm)/Co75Fe25 (5 nm ) /Cu (2.5 nm) /Co75Fe25 (5 nm ) /Ir20Mn80(12 nm) /cap Ta (8 nm) deposited at room temperature by magnetron sputtering. A vibrating sample magnetometer fixed with a heater was used to record the magnetic hysteresis loops at variational temperatures and x-ray diffraction was performed to characterize the structure of the multilayer. The exchange field Hex and the coercivity of the pinned CoFe layer Hop decrease monotonically with increasing temperature. The coercivity of the free CoFe layer Hcf in the spin valve shows a maximum at 498K. The temperature dependences of Hex, Hop and Hcf have also been discussed.  相似文献   

2.
We present the magnetoresistance measurements of ultrathin Mn5Ge3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between MnsGe3 and Ge (111), the thickness of MnsGe3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn5 Ge3 films appears a peak at about 6 kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn5 Ge3 film is a potential material for spin injection.  相似文献   

3.
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/Aly Ga1-yAs/AlxGal-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.  相似文献   

4.
The comment by Lin He proposes that at the interface between holmium and cobalt an interesting magnetic proximity effect occurs in which the spiral magnetic wavelength (λ) of holmium is enhanced to 5.4 nm. Consequently, the optimum holmium layer thickness for the superconductor spin triplet proximity effect to occur in Nb/Ho/Co/Ho/Nb Josephson junctions of ≈4.5 and ≈10 nm would then correspond to the presence of ≈λ/2 and ≈3λ/2 spiral wavelengths. Although intriguing, this idea seems to be at odds with the conventional micromagnetics of either thin film (polycrystalline) holmium or single-crystal Ho at low temperatures (10 K). Although an increase in λ in Ho/metal multilayer thin films with epitaxially matched interfaces has been reported, the possibility of such an effect in a polycrystalline system seems unlikely.  相似文献   

5.
A series of Ga doping perovskite cobaltite La2/3Sr1/3 (Co1-y Gay)03 (y = 0, 0.1, 0.2, 0.3 and 0.4) are prepared by the standard solid-state reaction method. Their magnetic properties and Co ions spin state transitions are studied. Upon doping, no appreciable structure changes can be found. However, the corresponding Curie temperature sharply decreases and the magnetization is greatly reduced, indicating that Ga doping destroys the ferromagnetic interaction in the system. In addition, the high temperature magnetization data follow the Curie-Weiss law. At least one kind of Co ions (Co^3+ or Co^4+) favours the mixed spin state, and most Co ions are at the lower spin state (low and intermediate state). With increasing Ga content, more Co ions transit to the higher spin state.  相似文献   

6.
Stage-2 CoCl2-GIC approximates a two-dimensional easy-plane (XY) ferromagnet on a triangular lattice. It has been found in prior work to order in two steps, with the intermediate phase showing long-ranged ferromagnetic correlations within the intercalate plane, but no correlations between neighboring planes. We have probed the wave vector and temperature dependence of the static and dynamic spin correlations in detail, including measurements of the critical scattering, the quasielastic scattering from vortex diffusion and the spin wave excitations with and without an external magnetic field. Some of the predictions for a Kosterlitz-Thouless type transition are met in this compound, at least qualitatively, including an apparent jump in the spin stiffness at the critical point and the existence of a diffusive central peak in the scattering function possibly originating from vortex autocorrelations. However, there are some inconsistencies between our observations and recent analytical studies as well as Monte Carlo-molecular dynamics simulations of the vortex dynamics that prevent unambigous assignment of the upper critical temperature as a vortex-binding transition.  相似文献   

7.
Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low spin relaxation rate and at low bias currents, vortices carrying magnetic polarization clouds become polaron-like and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen-Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as the voltage in the I–V characteristics jump to values corresponding to the BS drag coefficient at a critical current J c . The nonuniform components of the magnetic field and magnetization drop as the velocity increases, resulting in weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally, the jump shows up as a depinning transition and the corresponding current at the jump is the depinning current. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current J r < J c . As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides (RE)Ni2B2C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems for a detailed study of vortex polaron formation by measuring I–V characteristics. We also propose to use a superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow. For Nb and a proper magnet multilayer structure, we estimate the critical current density J c ~ 109 A/m2 at the magnetic field B ≈ 1 T.  相似文献   

8.
Using the time-dependent Schrödinger equation, we present the analytical result of the expectation value of spin injected into a two-dimensional electron gas with respect to an arbitrarily spin-polarized electron state and monitor the spin time-evolution. We demonstrate that the expectation value of spin operator Sx is the time-independent, and only the expectation values in the Sy-Sz plane are time-dependent. A detailed study of spin precession in the spin-valve and spin-transistor geometry is presented, in which the initial spin-polarized electron state point perpendicular and parallel to the current direction, respectively. We put forward the possible reason that the resistance change is independent of gate voltage in the spin-valve geometry. Furthermore, it has been shown that the effective magnetic field generated by the spin-orbit interaction is not same with the truly magnetic field. The main effect of the truly magnetic field is to align the spin along the field direction, but the effective magnetic field generated by the spin-orbit interaction does not.  相似文献   

9.
Dynamics in two-dimensional vortex systems with random pinning centres is investigated using molecular dynamical simulations. The driving force and temperature dependences of vortex velocity are investigated. Below the critical depinning force Fc, a creep motion of vortex is found at low temperature. At forces slightly above Fc, a part of vortices flow in winding channels at zero temperature. In the vortex channel flow region, we observe the abnormal behaviour of vortex dynamics: the velocity is roughly independent of temperature or even decreases with temperature at low temperatures. A phase diagram that describes different dynamics of vortices is presented.  相似文献   

10.
The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation (??SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H c2 P (T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in the Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn5.  相似文献   

11.
Electronic structures and magnetoresistance (MR) of Co3 Cu5 and Co3 Cur models as well as their interface atom exchange models Co2 CuCoCu4 and Co2 CuCoCu6 are investigated by the tlrst-principles pseudopotential planewave method based on density functional theory. Charge transfer, magnetic moment, density of states, spin asymmetry factor, and MR ratio are discussed. The results show that the values of charge transfer and spin asymmetry factor at the Fermi level of Co layers are closely related to the neighbouring background of the Co layer. The Co layer with two sides adjacent to the Cu layer would transfer more charge to the Cu layer than other neighbouring background and have the largest spin asymmetry factor at the Fermi level. The Co layer with two neighbouring Co layers (interior Co) would gain a little charge and have the smallest spin asymmetry factor at the Fermi level. Two-current model is used to evaluate the MR ratio of Co2CuCoCu4 (Co2CuCoCu6) to be larger than that of Co3 Cu5 (Co3 CUT), which can be explained by the charge transfer and spin asymmetry factor.  相似文献   

12.
We investigate the spin Hall magnetoresistance (SMR) in niobium (Nb) attached to Y3Fe5O12 near the superconducting critical temperature (Tc) of Nb. The SMR vanishes after cooling the sample below Tc, and recovers if the temperature is raised. When a magnetic field larger than the critical field of Nb is applied, the SMR re‐emerges with an enhanced magnitude even if the temperature is below Tc. The experimental results demonstrate that the SMR could be completely suppressed by the coupling between superconducting condensation and spin–orbit interaction in superconductors. In addition to the fundamental physics on the charge–spin interactions in superconductors, our work adds a different dimension to superconducting spintronics. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H0>3.8275, H0 is the magnetic field amplitude, the compensation effect does not appear in the system.  相似文献   

14.
We report the polarized far-infrared transmittance of Si-doped CuGeO3 single crystals as a function of impurity concentration and applied magnetic field at low temperature. We use the behavior of the 44 cm−1 spin gap excitation and the 98 cm−1 zone-folding mode structure to investigate the interaction between the magnetic system and the lattice distortion. We find that interchain impurity substitution collapses the spin gap before it suppresses the lattice dimerization, a result that is understood in terms of the relative length scales for lattice distortion and spin singlet formation as well as criteria for magnetoelastic coupling in chains.  相似文献   

15.
We study localized modes on a single magnetic impurity positioned in the bulk or at the surface of a one-dimensional chain, in the presence of a magnetic field B acting at the impurity site. The strong on-site nonlinear interaction U between two electrons of opposite spin at the impurity site, modelled here as a nonlinear local term, and the presence of the external field induce a strong correlation between parallel and antiparallel spin bound states. We find that, for an impurity in the bulk, a localized vector mode (with up and down spin components) is always possible for any given value of U and B, while for a surface impurity, a minimum value of both, U and B is needed to create a vector mode. In this case, up to two localized modes are possible, but only one of them is stable. The presence of the surface seems to destabilize the bulk mode in the parameter region UB, creating a “forbidden strip” region in parameter space, bounded by U=B+V and U=BV, approximately.  相似文献   

16.
Superconducting Nb thin films with a spacing-graded array of holes were prepared by electron beam lithography. Two films with different hole gradients were fabricated. The ac-driven vortices were investigated in Nb superconductors with a spacing-graded array of holes. The measurements revealed pronounced rectified voltage when the vortex lattice is driven by an ac injected current. The rectified voltage is mainly caused by the strength of the vortex–vortex interaction. The rectified motion of a vortex is affected by the pinning potential of the spacing-graded array and the applied magnetic field. The vortex–vortex interaction strength changes the effective pinning landscape of the vortices and an asymmetric potential is formed. Vortices depin easily from high concentration to low concentration of pinning sites. In both samples, the ac-driven vortices exhibit a variety of dynamical responses and the rectified voltage is tunable with the applied magnetic field.  相似文献   

17.
Ferromagnetic spin chains of a hexagonal lattice coupled by a weak antiferromagnetic interaction J1 develop a helix arrangement if the intrachain antiferromagnetic NNN exchange J2 is sufficiently large. We show that the classical minimum energy spin configuration is an umbrella when an external magnetic field is applied. The scenario is dramatically changed by quantum fluctuations. Indeed we find that the zero point motion forces the spins in a plane containing the magnetic field so that classical expectation is deceptive for our model. Our result is obtained by controlled expansion in the low field-long wavelength modulation limit. Received: 9 September 1997 / Revised: 15 October 1997 / Accepted: 17 November 1997  相似文献   

18.
We investigate spin-dependent current and shot noise, taking into account the Rashba spin–orbit coupling (RSOC) effect in double diluted magnetic semiconductor (DMS) barrier resonant tunneling diodes. The calculation is based on an effective mass approach. The magnetization of DMS is calculated by the mean-field approximation in low magnetic field. The spin-splitting of DMS depends on the sp–d exchange interaction. We also examine the dependence of transport properties of CdTe/CdMnTe heterostructures on applied voltage and relative angle between the magnetization of two DMS layers. It is found that the RSOC has great different influence on the transport properties of tunneling electrons with spin-up and spin-down, which have different contributions to the current and the shot noise. Also, we can see that the RSOC enhances the spin polarization of the system, which makes the nanostructure a good candidate for new spin filter devices. Thus, these numerical results may shed light on the next applications of quantum multilayer systems and make them a good choice for future spintronics devices.  相似文献   

19.
刘静思  李吉  刘伍明 《物理学报》2017,66(13):130305-130305
通过虚时演化方法研究了具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构.结果发现:面内四极磁场和旋转双重作用可导致中央Mermin-Ho涡旋的产生;随着磁场梯度增强,Mermin-Ho涡旋周围环绕的涡旋趋向对称化排布;在四极磁场下,密度相互作用和自旋交换相互作用作为体系的调控参数,可以控制Mermin-Ho涡旋周围的涡旋数目;该体系自旋结构中存在双曲型meron和half-skyrmion两种拓扑结构.  相似文献   

20.
We measure current–voltage characteristics at high driving currents for different magnetic fields and temperatures in Nb thin films of rather strong pinning. In a definite range of the BT phase diagram we find that a current induced transition occurs in the flux flow motion of the vortex lattice, namely a dynamic ordering (DO). Contrary to the case of weaker pinning materials, DO is observed only at low fields, due to the stronger intrinsic disorder that can deform plastically the moving vortex lattice even for small applied fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号