首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diphenyldibenzofulvene (DPDBF) molecule appears in two forms: ring open and ring closed. The former fluoresces weakly in solution, but it becomes strongly emissive in the solid phase, exhibiting an exotic aggregation-induced emission phenomenon. The latter presents a normal aggregation quenching phenomenon, as is expected. We implement nonadiabatic molecular dynamics based on the combination of time-dependent Kohn-Sham (TDKS) and density functional tight binding (DFTB) methods with Tully's fewest switches surface hopping algorithm to investigate the excited state nonradiative decay processes. From the analysis of the nonadiabatic coupling vectors, it is found that the low frequency twisting motion in the ring open DPDBF couples strongly with the electronic excitation and dissipates the energy efficiently. While in the closed form, such motion is blocked by a chemical bond. This leads to the nonradiative decay rate for the open form (1.4 ps) becoming much faster than the closed form (24.5 ps). It is expected that, in the solid state, the low frequency motion of the open form will be hindered and the energy dissipation pathway by nonradiative decay will be slowed, presenting a remarkable aggregation enhanced emission phenomenon.  相似文献   

2.
We report recent results on the nonradiative decay (NRD) of fluoren-9-ylidene malononitrile (FM) ambipolar derivatives (FMDs). 2,7- and 3,6-disubstituted FMDs present distinctive photophysics. Charge separation was found dominant for excited state relaxation. The radiative decay (RD) is sensitive to changes in temperature and solvent medium only for the case of 3,6-FMDs. Excited state deactivation of carbazole-containing 3,6-FMD (CPAFM36) was exclusively nonradiative in polar solvents with excited state lifetimes shorter than 10 ps. The charge separation/recombination mechanism of the corresponding FMDs is suggested to fall in the inverted Marcus region of electron transfer. Given the electron-withdrawing properties of the FM unit, its ambipolar derivatives are suggested as potential candidates for air-stable organic thin-film transistors and molecular organic photovoltaics.  相似文献   

3.
In its most simple form, the energy gap law for excited-state nonradiative decay predicts a linear dependence of ln k(nr) on the ground- to excited-state energy gap, where k(nr) is the rate constant for nonradiative decay. At this level of approximation, the energy gap law has been successfully applied to nonradiative decay in a wide array of MLCT excited states of polypyridyl complexes of Re(I), Ru(II), and Os(II). This relationship also predicts a dependence of k(nr) on the structural characteristics of the acceptor ligand. We report here a brief survey of the literature which suggests that such effects exist and have their origin in the extent of delocalization of the excited electron in the ligand pi framework and on acceptor ligand rigidity.  相似文献   

4.
Nonadiabatic first-principles molecular dynamics simulations have been performed of the photoexcited Watson-Crick guanine-cytosine (GC) DNA base pair in the gas phase and in aqueous solution. An excited state coupled proton-electron transfer (CPET) from G to C along the central hydrogen bond is observed upon excitation of the pipi* state initially localized on G. In the resulting charge transfer state a conical intersection between the excited state and the ground state is easily accessible. Therefore radiationless decay is fast, of the order of 100 fs, followed by a rapid CPET back reaction retrieving the initial Watson-Crick structure. A detailed analysis of the mechanism of nonradiative decay suggests a biexponential behavior in which out-of-plane motion plays a special role for the longer decay component.  相似文献   

5.
Although tetraphenylethylene (TPE) and its derivatives have been the most commonly used building blocks in the construction of molecules with aggregation-induced emission (AIE) properties, no absolute consensus exists regarding the mechanisms at the origin of the phenomenon. Restriction of intramolecular rotations (RIR) of peripheral phenyls has historically been a dominant paradigm, which has served as a valuable guideline in the molecular engineering of AIEgens. Yet, an increasing number of recent works have established that photoisomerization or photocyclization may actively participate in the nonradiative dissipation of the excitation energy. In this paper, the first experimental evaluation of the quantum efficiencies of these different processes is reported, and photoisomerization is shown to be by far the dominant photophysical pathway in solution, accounting for virtually all nonradiative decay of the molecule‘s excited state in degassed solution.  相似文献   

6.
An intensive investigation of structure–property relationships in the aggregation‐induced enhanced emission (AIEE) of luminescent compounds is essential for the rational design of highly emissive solid‐state materials. In the AIEE‐active compounds N,N′‐bis[3‐hydroxy‐4‐(2′‐benzothiazolyl)phenyl]isophthalamide and N,N′‐bis[3‐hydroxy‐4‐(2′‐benzothiazolyl)phenyl]‐5‐tert‐butylisophthalamide, fast photoinduced twisted intramolecular charge transfer (TICT) of the enol excited state is found to be mainly responsible for the weak emission of their dilute solutions. The photoinduced TICT enol excited state is formed with a greatly distorted configuration, due to the large rotation about the C? N single bond. This facilitates nonradiative TICT decay from the normal enol excited state to the highly twisted enol excited state, rather than proton‐transfer decay to the keto excited state. In aggregates, photoinduced nonradiative deactivation of TICT is strongly prohibited, so that excited‐state intramolecular proton transfer (ESIPT) becomes the dominant decay, and hence contributes greatly to the subsequent emission enhancement of the keto form. Molecular design and investigation of analogous single‐armed compounds further verifies this kind of AIEE mechanism.  相似文献   

7.
We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.  相似文献   

8.
9.
Ground and excited state inter- and intramolecular proton transfer reactions of a new o-hydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) have been investigated by means of absorption, emission and nanosecond spectroscopy in different protic solvents at room temperature and 77 K. The excited state intramolecular proton transfer (ESIPT) is evidenced by a large Stokes shifted emission (approximately 11000 cm(-1)) at a selected excited energy in alcoholic solvents. Spectral characteristics obtained reveal that ESBA exists in more than one structural form in most of the protic solvents, both in the ground and excited states. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rate constants, which are mainly represented by nonradiative decay rates. At 77 K the fluorescence spectra are found to be contaminated with phosphorescence spectra in glycerol and ethylene glycol. It is shown that the fluorescence intensity and nature of the species present are dependent upon the excitation energy.  相似文献   

10.
There have been intensive studies on the newly discovered phenomena called aggregation induced emission (AIE), in contrast to the conventional aggregation quenching. Through combined quantum mechanics and molecular mechanics computations, we have investigated the aggregation effects on the excited state decays, both via radiative and nonradiative routes, for pyrazine derivatives 2,3‐dicyano‐5,6‐diphenylpyrazine ( DCDPP ) and 2,3‐dicyanopyrazino phenanthrene ( DCPP ) in condensed phase. We show that for DCDPP there appear AIE for all the temperature, because the phenyl ring torsional motions in gas phase can efficiently dissipate the electronic excited state energy, and get hindered in aggregate; while for its “locked”‐phenyl counterpart, DCPP , theoretical calculation can only give the normal aggregation quenching. These first‐principles based findings are consistent with recent experiment. The primary origin of the exotic AIE phenomena is due to the nonradiative decay effects. This is the first time that AIE is understood based on theoretical chemistry calculations for aggregates, which helps to resolve the present disputes over the mechanism. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
The complete active space with second-order perturbation theory/complete active space self-consistent-field method was used to explore the nonradiative decay mechanism for excited 9H-guanine. On the 1pipi* (1L(a)) surface we determined a conical intersection (CI), labeled (S0pipi*)(CI), between the 1pipi* (1L(a)) excited state and the ground state, and a minimum, labeled (pipi*)min. For the 1pipi* (1L(a)) state, its probable deactivation path is to undergo a spontaneous relaxation to (pipi*)min first and then decay to the ground state through (S0pipi*)(CI), during which a small activation energy is required. On the 1n(N)pi* surface a CI between the 1n(N)pi* and 1pipi* (1L(a)) states was located, which suggests that the 1n(N)pi* excited state could transform to the 1pipi* (1L(a)) excited state first and then follow the deactivation path of the 1pipi* (1L(a)) state. This CI was also possibly involved in the nonradiative decay path of the second lowest 1pipi* (1L(b)) state. On the 1n(O)pi* surface a minimum was determined. The deactivation of the 1n(O)pi* state to the ground state was estimated to be energetically unfavorable. On the 1pisigma* surface, the dissociation of the N-H bond of the six-membered ring is difficult to occur due to a significant barrier.  相似文献   

13.
We investigate the nonradiative decay process of diphenyldibenzofulvene (DPDBF) in solid phase by using the quantum chemistry methods. To carry out the nonradiative rate constant calculation, we construct a solid phase model based on the ONIOM method. The geometry of the DPDBF molecule is optimized for the ground state by DFT and the first excited state by TD-DFT, and the corresponding vibrational frequencies and normal coordinates are computed. Under displaced-distorted harmonic oscillator potential approximation, Huang-Rhys factors are obtained. Vibronic coupling constants are calculated as a function of the normal mode based on Domcke's scheme. We find that vibronic coupling constants of 12 modes with large reorganization energies are of similar order, and if this result is still valid for other modes, the internal conversion rate would be determined by high frequency modes because they have a significant nuclear factor that is related to Franck-Condon overlap intergrals. We also find that geometrical changes are suppressed due to the stacking effect, which yields small Huang-Rhys values in the solid phase.  相似文献   

14.
Ground and second excited electronic states of halogen and monomethyl substituted vinoxy radicals were studied by multireference configuration interaction (MRCI) calculation. Optimized geometries, rotational constants and vibrational frequencies of vinoxy and 1-fluorovinoxy showed good agreement with experimental values. Differences in calculated and observed B-X electronic transition energies were less than 0.1 eV and observed trends of blue shift upon increasing the number of substituted halogen atoms were reproduced by MRCI calculation. Observed fluorescence lifetimes of the vibrationless level in B state were in good agreement with calculated values. Rotational profiles of the 0-0 vibronic bands were successfully simulated with calculated rotational constants and transition dipole moments. Energy differences between planar and nonplanar optimized geometries in B state showed good correlation with the onset of fast nonradiative decay in B state, supporting the proposed mechanism of nonradiative decay via avoided crossings from B to A state which is followed by the decay to the ground state via conical intersections.  相似文献   

15.
The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (approximately 10,600 cm-1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.  相似文献   

16.
The ultrafast radiationless decay of photoexcited uracil and cytosine has been investigated by ab initio quantum chemical methods based on CIS and CR-EOM-CCSD(T) electronic energy calculations at optimized CIS geometries. The calculated potential energy profiles indicate that the S(1) --> S(0) internal conversion of the pyrimidine bases occurs through a barrierless state switch from the initially excited (1)pipi state to the out-of-plane deformed excited state of biradical character, which intersects the ground state at a lower energy. This three-state nonradiative decay mechanism predicts that replacement of the C5 hydrogen by fluorine introduces an energy barrier for the initial state switch, whereas replacement of the C6 hydrogen by fluorine does not. These predictions are borne out by the very different fluorescence yields of 5-fluorinated bases relative to the corresponding 6-fluorinated bases. It is concluded from these results that the origin of the ultrafast radiationless decay is the same for the two pyrimidine bases.  相似文献   

17.
Chemical groups are known to tune the luminescent efficiencies of graphene-related nanomaterials, but some species, including the epoxide group (−COC−), are suspected to act as emission-quenching sites. Herein, by performing nonadiabatic excited-state dynamics simulations, we reveal a fast (within 300 fs) nonradiative excited-state decay of a graphene epoxide nanostructure from the lowest excited singlet (S1) state to the ground (S0) state via a conical intersection (CI), at which the energy difference between the S1 and S0 states is approximately zero. This CI is induced after breaking one C−O bond at the −COC− moiety during excited-state structural relaxation. This study ascertains the role of epoxide groups in inducing the nonradiative recombination of the excited electron-hole, providing important insights into the CI-promoted nonradiative de-excitations and the luminescence tuning of relevant materials. In addition, it shows the feasibility of utilizing nonadiabatic excited-state dynamics simulations to investigate the photophysical processes of the excited states of graphene nanomaterials.  相似文献   

18.
The nonradiative decay of a π-stacked pair of adenine molecules,one of which was excited by an ultrafast laser pulse,is studied by semiclassical dynamics simulations.This simulation investigation is focused on the effect of the formation of bonded excimer in stacked adenines on the mechanism of ultrafast decay.The simulation finds that the formation of the bonded excimer significantly lowers the energy gap between the LUMO and HOMO and consequently facilitates the deactivation of the electronically excited molecule.On the other hand,the formation of the chemical bond between two stacked adenines restricts the deformation vibration of the pyrimidine of the excited molecule due to the steric effect.This slows down the formation of the coupling between the HOMO and LUMO energy levels and therefore delays the deactivation process of the excited adenine molecule to the electronic ground state.  相似文献   

19.
Spectral properties of a new fluorescent ketocyanine dye have been discussed. The energy of maximum absorption/fluorescence of the dye exhibits bathochromic shift with increasing polarity of the medium. Both dipolarity-polarisability and hydrogen bond donation interaction contribute to solvation of the dye. Study of fluorescence parameters points to existence of different emitting states of the dye for aprotic and protic solvents. While the emitting state is the (1)(π, π*) state for aprotic solvents, fluorescence supposedly take place from a different emitting state involving H-bond formation in the excited state in protic solvents. Fluorescence parameters of the dye have been compared with those for a structurally similar symmetric ketocyanine dye. The faster decay of the dye relative to its symmetric counterpart has been explained as due to an increase of nonradiative decay.  相似文献   

20.
The excited state properties of a series of singly bonded dirhodium compounds, consisting of Rh(0)(2), Rh(0)Rh(II)X(2), and Rh(II)(2)X(4) (X = Cl and Br) cores coordinated by three bis(difluorophosphino)methylamine ligands, have been investigated. The newly synthesized complexes with X = Br have been structurally characterized. The mixed-valence complex Rh(2)[&mgr;-CH(3)N(PF(2))(2)](3)Br(2)[(PF(2))CH(3)N(PF(2))] crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 13.868(7) ?, b = 16.090(5) ?, c = 11.614(5) ?, V = 1591(3) ?(3), and Z = 4; the structure was refined to values of R = 0.052 and R(w) = 0.062. Orange crystals of Rh(2)[&mgr;-CH(3)N(PF(2))(2)](3)Br(4) are monoclinic with a C2/c space group: a = 14.62(6) ?, b = 12.20(2) ?, c = 14.33(1) ?; beta = 106.0(2) degrees; V = 2457(11) ?(3); Z = 4; and R = 0.058 and R(w) = 0.056. Crystalline solids and low-temperature glasses of each member of the chloride and bromide series exhibit long-lived red luminescence. Excitation profiles and temperature dependencies of the emission bandwidths and lifetimes for all complexes are characteristic of luminescence originating from a dsigma excited state. Efficient nonradiative decay is observed upon the thermal population of an excited state proximate to the lowest energy emissive excited state of these complexes. The nonradiative decay rate constant of the upper excited state is 10(2)-10(3) and 10(3)-10(4) greater than that of the emissive excited state for complexes with X = Cl and Br, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号