共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Saburo Tanaka Yoshimi Hatsukade Shuichi Suzuki 《Journal of magnetism and magnetic materials》2009,321(7):880-883
High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods. 相似文献
3.
We present a new filter scheme for magnetocardiogram (MCG) signal processing based on the quasi-periodic characteristic of the signals. The key points of this scheme are to determine the exact numbers of data points in each cardiac cycle by using electrocardiogram (ECG) data acquired simultaneously with the MCG signal and to normalize the MCG data sequence in each cycle into an identical length. Compared with conventional filters, the scheme has the advantage of more powerful noise suppression with less signal distortion. The desire for having high quality output signals from raw MCG data acquired in a simple shielded room or even in unshielded environment may be realized with the scheme. 相似文献
4.
We discuss the influence of Al^3+ on the charge transfer state (CTS) and the photoluminescence properties of BaZr(BO3)2:Eu. The results reveal that there is a red shift which is about 20nm for the charge transfer state when doping with Al^3+ and indicate the formation of ‘free' electrons due to the change of microstructures. In addition, the influence or Al^3+ doping on the PPR is analysed and a new explanation is raised based on the photo luminescent mechanism. It is the CTS intensity rather than the CTS energy that influences the peak-peak ratio. 相似文献
5.
Mg63Ni22Pr15 metallic glasses are produced by a single roller melt-spinning technique. The hydrogen absorption and desorption capacities are respectively 0.38 and 0.14 wt% at 313 K obtained by pressure-composition isotherm. The amorphous structure is found to be retained after gaseous hydrogenation. The glass transition temperature, the onset crystallization temperature, and the crystallization temperature of the hydrogenated Mg63Ni22Pr15 metallic glass are 550, 570 and 577K, respectively, much higher than the corresponding values of 440, 470 and 499K of the as-quenched sample. This means that dramatic enhancement of thermal stability occurs in Mg63Ni22Pr15 metallic glass due to hydrogenation. 相似文献
6.
Preparation of Mg55Ni35Si10 Amorphous Powders by Mechanical Alloying and Consolidation by Vacuum Hot Pressing 下载免费PDF全文
Amorphous Mg55Ni35Si10 powders are fabricated by using a mechanical alloying technique. The amorphous powders are found to exhibit a relatively high crystallization temperature of 380℃. The as-milled amorphous Mg55Ni35Si10 powders are consolidated successfully into bulk body by vacuum hot pressing technique. Limited nanocrystallization is noticed. The Vickers microhardness range of the Mg55Ni35Si10 bulk sample is 7834 to 8048 MPa. Its bending strength and compressive strength are 529 MPa and 1466 MPa, respectively. 相似文献
7.
Meir Israelowitz 《Journal of luminescence》2007,126(1):149-154
Melanophila acuminata beetles are attracted to forest fires over long distances by a pair of specialized infrared sensory organs. To date, there is no knowledge of their ability to detect or emit fluorescent radiation. We studied the Melanophila acuminata infrared sensory organs histologically and by using fluorescent microscopy, acoustic-optic tunable filter microscopy, and two-photon microscopy to identify fluorescence. We found fluorescent absorption at radiation wavelengths of 480 nm and emission at 570 nm. The functional role of this novel fluorescence is, as of yet, unknown but may be applied to species classification, identification and behavioral studies. 相似文献
8.
W. Kilian A. Haller F. Seifert D. Grosenick H. Rinneberg 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2007,42(2):197-202
We studied the free precession of the nuclear magnetization of hyperpolarized
129Xe gas in external magnetic fields as low as B0 = 4.5 nT, using
SQUIDs as magnetic flux detectors.
The transverse relaxation was mainly caused by the restricted diffusion of
129Xe in the presence of ambient magnetic field gradients.
Its pressure dependence was measured in the range from 30 mbar to 850 mbar and
compared quantitatively to theory.
Motional narrowing was observed at low pressure, yielding transverse relaxation
times of up to 8000 s. 相似文献
9.
A.D. Alhaidari 《Annals of Physics》2005,317(1):152-174
We lift the constraint of a diagonal representation of the Hamiltonian by searching for square integrable bases that support an infinite tridiagonal matrix representation of the wave operator. The class of solutions obtained as such includes the discrete (for bound states) as well as the continuous (for scattering states) spectrum of the Hamiltonian. The problem translates into finding solutions of the resulting three-term recursion relation for the expansion coefficients of the wavefunction. These are written in terms of orthogonal polynomials, some of which are modified versions of known polynomials. The examples given, which are not exhaustive, include problems in one and three dimensions. 相似文献
10.
We investigate the high resolution absorption spectroscopy of P2 radical, generated in ac glow discharge of PC13 buffered with helium, using optical heterodyne magnetic rotation enhanced concentration modulation spectroscopy in the visible region. The (1, 2), (1, 3) and (2, 3) bands of c^3Ⅱu- b^3Ⅱg in the range 16620-17860cm^-1 are observed and their 3II2 3II2 subbands are rotationally analysed. A set of effective molecular constants for the Ω= 2 component of the states involved are determined. 相似文献
11.
High-Pressure Annealing Effect on Glass Transformation Temperature of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass 下载免费PDF全文
Zr41 Ti14 Cu12.5Ni10Be22.5 bulk metallic glasses (BMG) are annealed at a temperature of 603 K under ambient and high pressures in the range of 3-6 GPa. The effect of high pressure annealing on the nanocrystallization process of compressed specimens is investigated by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy. Experimental results show that the grain size of the crystalline phase decreases with the increasing pressure. For the Zr41Ti14Cu12.5Nil0Be22.5 BMG annealing at 603K in the pressure range of 0- 6 GPa, the activation energy 159.68 kJ/mol and the activation volume △V* =0.94 cm^3/mol are determined. The mechanism for the effects of the high pressure on the nanocrystallization process of the BMG is discussed. 相似文献
12.
Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O2 and H2O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many CC bonds are transformed into more polar oxygen containing functional groups. 相似文献
13.
K.S. Kao C.C. Cheng Y.C. Chen Y.H. Lee 《Applied Physics A: Materials Science & Processing》2003,76(7):1125-1127
The characteristics of surface-acoustic-wave (SAW) devices on various substrates were measured by a network analyzer in the
temperature range from 0 to 80 °C. Based on the structure of IDT/AlN/LiNbO3, it was revealed that the magnitude of the temperature coefficient of frequency (TCF) of a SAW on a LiNbO3 substrate was significantly decreased due to the thickness increase of AlN thin film deposited on the LiNbO3 substrate. The TCF of a SAW on an AlN/LiNbO3 device was measured to be about -51 ppm/°C at h/λ=0.1, where h is the thickness of the AlN film and λ is the wavelength of
the SAW. This indicates that the deposition of an AlN film on a LiNbO3 substrate could improve the temperature stability, as compared with that of a SAW on a LiNbO3 substrate (-73 ppm/°C). The SAW device on the ST-X quartz is shown to have a positive TCF as the AlN thin film is deposited
on the surface of the ST-X quartz. In addition, the phase velocity (Vp) of the SAW on an AlN/LiNbO3 substrate was significantly increased by the increase of AlN thickness (h/λ).
Received: 14 October 2002 / Accepted: 15 October 2002 / Published online: 29 January 2003
RID="*"
ID="*"Corresponding author. Fax: +886-7/525-4199, E-mail: ycc@ee.nsysu.edu.tw 相似文献
14.
Near Infrared Photoluminescence from Yb,Al Co-implanted SiO2 Films on Silicon 总被引:1,自引:0,他引:1 下载免费PDF全文
Intense room-temperature near infrared (NIR) photoluminescence (980 nm and 1032 nm) is observed from Yb,Al co-implanted SiO2 films on silicon. The optical transitions occur between the ^2F5/2 and ^2F7/2 levels of Yb^3+ in SiO2. The additional Al-implantation into SiO2 films can effectively improve the concentration quenching effect of Yb^3+ in SiO2. Photoluminescence excitation spectroscopy shows that the NIR photoluminescence is due to the non-radiative energy transfer from Al-implantation-induced non-bridging oxygen hole defects in SiO2 to Yb^3+ in the Yb-related luminescent complexes. It is believed that the defect-mediated luminescence of rare-earth ions in SiO2 is very effective. 相似文献
15.
Influence of Yb-Doped Nanoporous TiO2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells 下载免费PDF全文
Yb-doped TiO2 pastes with different Yb/TiO2 weight ratios are prepared in the sol-gel process to obtain dyesensitized solar cells (DSCs). The nanocrystalline size of Yb-TiO2 becomes smaller and the lattice parameters change. Lattice distortion is observed and dark current is detected. It is found that a part of Yb existing as insulating oxide Yb2O3 state acts as barrier layers at the electrode-electrolyte interface to suppress charge recombination. A Yb-doped TiO2 electrode applied in DSCs leads to a higher open-circuit voltage and a higher fill factor. How the Yb-doped TiO2 films affect the photovoltaic response of DSCs is discussed. 相似文献
16.
Classic molecular dynamics (MD) calculations were performed to investigate the deposition of thin hydrocarbon film. SiC (1 0 0) surfaces were bombarded with energetic CH3 molecules at impact energies ranging from 50 to 150 eV. The simulated results show that the deposition yield of H atoms decreases with increasing incident energy, which is in good agreement with experiments. During the initial stages, with breaking Si-C bonds in SiC by CH3 impacting, H atoms preferentially reacts with resulting Si to form Si-H bond. The C/H ratio in the grown films increases with increasing incident energy. In the grown films, CH species are dominant. For 50 eV, H-Csp3 bond is dominant. With increasing energy to 200 eV, the atomic density of H-Csp2 bond increases. 相似文献
17.
Baowei Qiao Jie Feng Yun Ling Ting’ao Tang Bomy Chen 《Applied Surface Science》2006,252(24):8404-8409
The effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 film are studied in detail. Electrical properties and thermal stability can be improved by doping small amount of Si in the Ge2Sb2Te5 film. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phase-transition temperature from face-centered cubic (fcc) phase to hexagonal (hex) phase, however, decreases the melting point slightly. The crystallization activation energy reaches a maximum at 4.1 at.% and then decreases with increasing dopant concentration. The electrical conduction activation energy increases with the dopant concentration, which may be attributed to the increase of strong covalent bonds in the film. The resistivity of Ge2Sb2Te5 film shows a significant increase with Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460 °C annealing increases from 1 to 11 mΩ cm compared to the undoped Ge2Sb2Te5 film. Current-voltage (I-V) characteristics show Si doping may increase the dynamic resistance, which is helpful to writing current reduction of phase-change random access memory. 相似文献
18.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide. 相似文献
19.
Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications. 相似文献
20.
A high-quality ferromagnetic GaMnN (Mn=2.8 at%) film was deposited onto a GaN buffer/Al2O3(0 0 0 1) at 885 °C using the metal-organic chemical vapor deposition (MOCVD) process. The GaMnN film shows a highly c-axis-oriented hexagonal wurtzite structure, implying that Mn doping into GaN does not influence the crystallinity of the film. No Mn-related secondary phases were found in the GaMnN film by means of a high-flux X-ray diffraction analysis. The composition profiles of Ga, Mn, and N maintain nearly constant levels in depth profiles of the GaMnN film. The binding energy peak of the Mn 2p3/2 orbital was observed at 642.3 eV corresponding to the Mn (III) oxidation state of MnN. The presence of metallic Mn clusters (binding energy: 640.9 eV) in the GaMnN film was excluded. A broad yellow emission around 2.2 eV as well as a relatively weak near-band-edge emission at 3.39 eV was observed in a Mn-doped GaN film, while the undoped GaN film only shows a near-band-edge emission at 3.37 eV. The Mn-doped GaN film showed n-type semiconducting characteristics; the electron carrier concentration was 1.2×1021/cm3 and the resistivity was 3.9×10−3 Ω cm. Ferromagnetic hysteresis loops were observed at 300 K with a magnetic field parallel and perpendicular to the ab plane. The zero-field-cooled and field-cooled curves at temperatures ranging from 10 to 350 K strongly indicate that the GaMnN film is ferromagnetic at least up to 350 K. A coercive field of 250 Oe and effective magnetic moment of 0.0003 μB/Mn were obtained. The n-type semiconducting behavior plays a role in inducing ferromagnetism in the GaMnN film, and the observed ferromagnetism is appropriately explained by a double exchange mechanism. 相似文献